For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images.Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260824PMC
http://dx.doi.org/10.1088/0031-9155/60/19/7437DOI Listing

Publication Analysis

Top Keywords

sparse view
32
attenuation correction
28
ultra-low dose
20
view data
20
data acquisition
20
pet image
16
pet attenuation
16
pet
13
view
12
dose levels
12

Similar Publications

Unrolled deep learning for breast cancer detection using limited-view photoacoustic tomography data.

Med Biol Eng Comput

January 2025

Department of Electrical and Communication Engineering, United Arab Emirates University, Asharej, Al Ain, 15551, Abu Dhabi, United Arab Emirates.

Photoacoustic tomography (PAT) has emerged as a promising imaging modality for breast cancer detection, offering unique advantages in visualizing tissue composition without ionizing radiation. However, limited-view scenarios in clinical settings present significant challenges for image reconstruction quality and computational efficiency. This paper introduces novel unrolled deep learning networks based on split Bregman total variation (SBTV) and relaxed basis pursuit alternating direction method of multipliers (rBP-ADMM) algorithms to address these challenges.

View Article and Find Full Text PDF

While radiation hazards induced by cone-beam computed tomography (CBCT) in image-guided radiotherapy (IGRT) can be reduced by sparse-view sampling, the image quality is inevitably degraded. We propose a deep learning-based multi-view projection synthesis (DLMPS) approach to improve the quality of sparse-view low-dose CBCT images. In the proposed DLMPS approach, linear interpolation was first applied to sparse-view projections and the projections were rearranged into sinograms; these sinograms were processed with a sinogram restoration model and then rearranged back into projections.

View Article and Find Full Text PDF

Objective: Inferior pole patellar fractures (IPPFs) pose a significant challenge due to their complex fracture patterns and high risk of complications associated with current treatment methods. This study aims to (1) characterize the fracture patterns of IPPFs using fracture mapping and (2) compare the biomechanical stability and clinical outcomes of treatment with anchor suture with patellar cerclage versus Kirschner-wire tension band combined with patellar cerclage.

Methods: (1) A retrospective analysis was conducted on 61 patients with IPPF.

View Article and Find Full Text PDF

Contrastive independent subspace analysis network for multi-view spatial information extraction.

Neural Netw

January 2025

College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, China.

Multi-view classification integrates features from different views to optimize classification performance. Most of the existing works typically utilize semantic information to achieve view fusion but neglect the spatial information of data itself, which accommodates data representation with correlation information and is proven to be an essential aspect. Thus robust independent subspace analysis network, optimized by sparse and soft orthogonal optimization, is first proposed to extract the latent spatial information of multi-view data with subspace bases.

View Article and Find Full Text PDF

Existing studies have established a linear relationship between urban environments and adolescent health, but the combined impacts of subjective and objective environments on multi-dimensional health status (including physical and mental health) have not been fully explored. Furthermore, while some studies have examined the non-linear relationship between urban environments and adult health, research specifically focusing on adolescents is sparse. Using Kunming, China, as a case study, we employ Random Forest model to examine the non-linear relationship between subjective/objective neighborhood environments and adolescent physical/mental health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!