Reported is the ability of α-helical polypeptides to self-assemble with oppositely-charged polypeptides to form liquid complexes while maintaining their α-helical secondary structure. Coupling the α-helical polypeptide to a neutral, hydrophilic polymer and subsequent complexation enables the formation of nanoscale coacervate-core micelles. While previous reports on polypeptide complexation demonstrated a critical dependence of the nature of the complex (liquid versus solid) on chirality, the α-helical structure of the positively charged polypeptide prevents the formation of β-sheets, which would otherwise drive the assembly into a solid state, thereby, enabling coacervate formation between two chiral components. The higher charge density of the assembly, a result of the folding of the α-helical polypeptide, provides enhanced resistance to salts known to inhibit polypeptide complexation. The unique combination of properties of these materials can enhance the known potential of fluid polypeptide complexes for delivery of biologically relevant molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201504861DOI Listing

Publication Analysis

Top Keywords

α-helical polypeptides
8
α-helical polypeptide
8
polypeptide complexation
8
polypeptide
6
α-helical
5
self-assembly α-helical
4
polypeptides driven
4
driven complex
4
complex coacervation
4
coacervation reported
4

Similar Publications

Copper-Catalyzed Successive Radical Reactions of Glycine Derivatives.

Org Lett

January 2025

Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

Here, we present a three-component successive radical addition strategy for the preparation of complex noncanonical α-amino acids from easily available glycine derivatives, alkenes, and aryl sulfonium salts via a copper-catalyzed photoredox-neutral catalytic cycle. The utility of this method is further demonstrated by its application in late-stage site-selective modifications of glycine residues in short peptides. It is worth noting that only 1 mol % copper catalyst is required in this reaction, demonstrating high catalytic efficiency.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Chemical proteomic profiling of lysine crotonylation using minimalist bioorthogonal probes in mammalian cells.

Chem Sci

January 2025

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Protein lysine crotonylation has been found to be closely related to the occurrence and development of various diseases. Currently, site identification of crotonylation is mainly dependent on antibody enrichment; however, due to the cost, heterogeneity, and specificity of antibodies, it is desired to develop an alternative chemical tool to detect crotonylation. Herein, we report an alkynyl-functionalized bioorthogonal chemical probe, Cr-alkyne, for the detection and identification of protein lysine crotonylation in mammalian cells.

View Article and Find Full Text PDF

Background: Improved diagnostic tools are needed for detecting active filarial infections in humans. Tests are available that detect adult circulating filarial antigen, but there are no sensitive and specific biomarker tests for brugian filariasis or loiasis. Here we explored whether extracellular vesicles released by filarial parasites contain diagnostic biomarker candidates.

View Article and Find Full Text PDF

The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!