Growing evidence has indicated that opioids enhance replication of human immunodeficiency virus and hepatitis C virus in target cells. However, it is unknown whether opioids can enhance replication of other clinically important viral pathogens. In this study, the interaction of opioid agonists and human influenza A/WSN/33 (H1N1) virus was examined in human lung epithelial A549 cells. Cells were exposed to morphine, methadone or buprenorphine followed by human H1N1 viral infection. Exposure to methadone differentially enhanced viral propagation, consistent with an increase in virus adsorption, susceptibility to virus infection and viral protein synthesis. In contrast, morphine or buprenorphine did not alter H1N1 replication. Because A549 cells do not express opioid receptors, methadone-enhanced H1N1 replication in human lung cells may not be mediated through these receptors. The interaction of methadone and H1N1 virus was also examined in adult mice. Treatment with methadone significantly increased H1N1 viral replication in lungs. Our data suggest that use of methadone facilitates influenza A viral infection in lungs and might raise concerns regarding the possible consequence of an increased risk of serious influenza A virus infection in people who receive treatment in methadone maintenance programs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/adb.12305DOI Listing

Publication Analysis

Top Keywords

human influenza
8
virus
8
influenza virus
8
opioids enhance
8
enhance replication
8
replication human
8
h1n1 virus
8
virus examined
8
human lung
8
a549 cells
8

Similar Publications

Syndromic multiplex panel testing enables simultaneous detection of multiple respiratory pathogens, but limited data is available on the comparative diagnostic performance of different testing systems. In this multicenter prospective study, we aimed to compare the QIAstat-Dx Respiratory Panel 2.0 (QIAstat-Dx-RP2.

View Article and Find Full Text PDF

Background: The global seasonal influenza activity has decreased during the coronavirus disease 2019 (COVID-19) pandemic. Non-pharmaceutical interventions (NPIs), such as reducing gatherings and wearing masks, can have varying impacts on the spread of influenza. We aim to analyse the basic characteristics, epidemiology and space-time clustering of influenza in Quzhou city before and after the COVID-19 pandemic based on five years of surveillance data.

View Article and Find Full Text PDF

In Brazil, at least four lineages of influenza A virus circulate pig population: 2009 H1N1 flu pandemic (pH1N1), human-seasonal origin H3N2, H1N1 and H1N2 (huH1 lineages) viruses. Studies related to the occurrence of swine influenza A virus (SIAV) in Brazilian herds have been detecting an increase of occurrence of huH1 lineages. This study aimed to construct recombinant vaccines against the huH1N1 virus and test the immunogens in a murine model.

View Article and Find Full Text PDF

Mutability and hypermutation antagonize immunoglobulin codon optimality.

Mol Cell

December 2024

Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA. Electronic address:

The efficacy of antibody responses is inherently linked to paratope diversity, as generated through V(D)J recombination and somatic hypermutation. Despite this, it is unclear how genetic diversification mechanisms evolved alongside codon optimality and affect antibody expression. Here, we analyze germline immunoglobulin (IG) genes, natural V(D)J repertoires, serum IgG, and monoclonal antibody (mAb) expression through the lens of codon optimality.

View Article and Find Full Text PDF

People in Australia have access to different influenza vaccines, but may be unaware of their options and features. Preference studies for differentiated influenza vaccines including cell-based vaccines are limited, particularly in Australia. This study investigated which influenza vaccine attributes people in Australia value using a discrete choice experiment (DCE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!