Splitting water into hydrogen and oxygen is one of the most promising ways of storing energy from intermittent, renewable sources in the future. Toward this goal, development of inexpensive, stable, and non-toxic catalysts for water oxidation is crucial. We report that the electrodeposition of manganese oxide in the presence of sodium dodecyl sulfate (SDS) produces a material that is highly active for electrocatalytic water oxidation at pH near 7 and remains stable for over 24 hours of sustained electrolysis. Clark electrode measurements demonstrate more than 95% Faradaic efficiency for oxygen evolution after an initial charging period. We found that catalytic performance was optimized in films prepared by electrodeposition using a precursor solution containing moderate concentration of substrates, namely 25 mM Mn(2+) and 25 mM SDS. Microstructure and elemental analyses revealed that the deposited material, a mixed-phase manganese oxide, is structurally similar to materials used for electrochemical capacitors and batteries, drawing a parallel between highly studied cathode materials for rechargeable batteries and heterogeneous catalysts for water oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt02390d | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China.
Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, , and three strains of bacteria, . We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs.
View Article and Find Full Text PDFChemSusChem
December 2024
Sungkyunkwan University, Department of Physics, 2066, Seobu-ro,, Jangan-gu,, 16419, Suwon, KOREA, REPUBLIC OF.
The oxygen evolution reaction (OER) is a critical challenge in electrocatalytic water splitting, hindered by high energy demands and slow kinetics. Polyoxometalates (POMs), recognized for their unique redox capabilities, structural archetypes, and molecular precision, are promising candidates for the oxygen evolution reaction (OER). Yet, their application is hindered by high water solubility, causing rapid degradation and efficiency loss under harsh OER conditions.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
The decomposition of ozone on supported manganese oxide catalysts, studied here, exemplifies reactions involving electron transfer. In situ extended X-ray absorption fine-structure spectra (Mn K-edge) on in situ treated samples show that the supported phase in MnO/SiO resembles MnO while that in MnO/AlO samples resembles MnO. In situ Raman spectroscopy shows the involvement of a common peroxide surface species.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
To investigate the remediation effect of iron-manganese-modified biochar from different biomasses (FM-BC) on Cd-contaminated alkaline soil, FM-BC was prepared using branches of , durian shells, and corn stalks. The characteristics of FM-BC, the adsorption of Cd(Ⅱ) in water, and the available, fraction of Cd in alkaline soil were studied using bath adsorption and soil culture experiments. The results showed that the specific surface area, total pore volume, and oxygen content of FM-BC were significantly improved.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.
This work reports a targeted activation of C-O-C of furfural alcohol (FA) to produce pentanediols (PeDs) over MnO-modified Cu. Infrared spectroscopy revealed the strong interaction of the furan ring and C-O-C of FA with the catalyst surface in a preferred flat adsorption configuration, thus facilitating the activation and cleavage of C-O-C to form PeDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!