The expression of morphine by plants, invertebrate, and vertebrate cells and organ systems, strongly indicates a high level of evolutionary conservation of morphine and related morphinan alkaloids as required for life. The prototype catecholamine, dopamine, serves as an essential chemical intermediate in morphine biosynthesis, both in plants and animals. We surmise that, before the emergence of specialized plant and animal cells/organ systems, primordial multi-potential cell types required selective mechanisms to limit their responsiveness to environmental cues. Accordingly, cellular systems that emerged with the potential for recruitment of the free radical gas nitric oxide (NO) as a multi-faceted autocrine/paracrine signaling molecule, were provided with extremely positive evolutionary advantages. Endogenous morphinergic signaling, in concert with NO-coupled signaling systems, has evolved as an autocrine/paracrine regulator of metabolic homeostasis, energy metabolism, mitochondrial respiration and energy production. Basic physiological processes involving morphinergic/NO-coupled regulation of mitochondrial function, with special emphasis on the cardiovascular system, are critical to all organismic survival. Key to this concept may be the phenomenon of mitochondrial enslavement in eukaryotic evolution via endogenous morphine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10863-015-9626-8DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
morphine
5
morphine stimulates
4
stimulates nitric
4
oxide release
4
release human
4
human mitochondria
4
mitochondria expression
4
expression morphine
4
morphine plants
4

Similar Publications

Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia.

Nat Prod Bioprospect

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.

Fifteen novel carbazole alkaloids, euchrestifolines A-O (1-15), were obtained from Murraya euchrestifolia. Their structures were elucidated by spectroscopic analysis, Mosher's ester, calculated ECD, and transition metal complex ECD methods. Notably, euchrestifolines A-C (1-3) are the first naturally occurring pyrrolidone carbazoles to be identified, while euchrestifolines D-F (4-6) represent rare carbazole alkaloids containing a phenylpropanyl moiety; euchrestifoline G (7) features a unique benzopyranocarbazole skeleton.

View Article and Find Full Text PDF

Outcomes and Impact of Device Iterations in Mitral Valve Transcatheter Edge-to-Edge Repair: The REPAIR Study.

JACC Cardiovasc Interv

November 2024

Department of Cardiology, Heart Center, Faculty of Medicine, University of Cologne, Cologne, Germany. Electronic address:

Background: The PASCAL P10 system for mitral valve transcatheter edge-to-edge repair has undergone iterations, including introduction of the narrower Ace implant and the Precision delivery system.

Objectives: The study sought to evaluate outcomes and the impact of PASCAL mitral valve transcatheter edge-to-edge repair device iterations.

Methods: The REPAIR (REgistry of PAscal for mltral Regurgitation) study is an investigator-initiated, multicenter registry including consecutive patients with mitral regurgitation (MR) treated from 2019 to 2024.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, with incidence and mortality rates persistently climbing despite extensive research efforts. Innovative therapeutic approaches are still needed to extend patients' lives and preserve their health. In the present study, novel supramolecular nanomedicine with both nitric oxide (NO) and antioxidant releasing ability was developed to enhance therapeutic efficacy against vascular injuries.

View Article and Find Full Text PDF

It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!