The dorsal periaqueductal gray (DPAG) has long been implicated in the pathophysiology of anxiety, particularly in panic disorder (PD). Evidence obtained with animal models indicates that different neurotransmitters/neuromodulators in this midbrain area are involved in the regulation of anxiety- (e.g. inhibitory avoidance) and panic- (e.g. escape) associated defensive behaviors. Earlier findings showed that activation of serotonin (5-HT) 1A and 2A receptors in the DPAG inhibits escape expression, a panicolytic-like effect. Recently gathered evidence shows that different classes of antipanic drugs, such as the selective serotonin reuptake inhibitor antidepressant fluoxetine or the benzodiazepine alprazolam, enhance the inhibitory action of 5-HT upon these receptors. They also show that opioidergic mechanisms, through the activation of μ-receptors, contribute to this process. As with 5-HT, activation of GABAA or GABAB receptors, or cannabinoid type 1receptors as well as the tropomyosin-related kinase B receptors by brain-derived neurotrophic factor in the DPAG also inhibits escape expression. There is evidence that chronic antidepressant treatment, besides facilitating 5-HT/opioid neurotransmission, also increases brain-derived neurotrophic factor levels in this area with an impact on its panicolytic effect. On the other hand, facilitation of corticotrophin releasing factor- or cholecystokinin-mediated neurotransmission in the DPAG, via CRF1 and CCK2 receptors, respectively, causes panicogenic-like effects with implications for the pathogenesis of PD. A better understanding of the neurochemical control of defense in the DPAG may foster the development of new strategies for pharmacological treatment of PD.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871527314666150909114558DOI Listing

Publication Analysis

Top Keywords

dorsal periaqueductal
8
periaqueductal gray
8
5-ht receptors
8
dpag inhibits
8
inhibits escape
8
escape expression
8
brain-derived neurotrophic
8
neurotrophic factor
8
dpag
5
receptors
5

Similar Publications

Dysregulation of the dopamine (DA) system is a hallmark of substance use disorders, including alcohol use disorder (AUD). Of the DA receptor subtypes, the DA D2 receptors (D2Rs) play a key role in the reinforcing effects of alcohol. D2Rs are expressed in numerous brain regions associated with the regulation of appetitive behaviors.

View Article and Find Full Text PDF

Deconstructing the neural circuit underlying social hierarchy in mice.

Neuron

December 2024

Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China. Electronic address:

Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice.

View Article and Find Full Text PDF

Panic disorder is more frequent in women than in men. In women, vulnerability to panic is enhanced during the late luteal phase of the menstrual cycle. At this time secretion of progesterone and its neuroactive metabolite allopregnanolone (ALLO), which acts as a positive allosteric modulator of the actions of GABA at GABA receptors, decline sharply.

View Article and Find Full Text PDF

Fentanyl exposure alters rat CB1 receptor expression in the insula, nucleus accumbens and substantia nigra.

Neurosci Lett

January 2025

Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA. Electronic address:

Prolonged periods of opioid use have been shown to cause neuroadaptations in the brain's reward circuitry, contributing to addictive behaviors and drug dependence. Recently, considerable focus has been placed on the role of the endocannabinoid system (ECS) and its CB receptors in opioid-driven behaviors. However, opioid-induced neuroadaptations to the ECS remain understudied.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how cerebral blood flow (CBF) varies in different brain regions under severe hypotension caused by tachyarrhythmia in anesthetized rats.
  • - Researchers found that during moderate hypotension, CBF was relatively preserved in most brain areas except the motor cortex (MC), while severe hypotension caused a selective reduction in blood flow to specific regions including the MC, thalamus, and dlPAG.
  • - The findings suggest that CBF is not uniformly affected by hypotension, and understanding this variability could improve treatment strategies for conditions like syncope and cerebral ischemia in patients with arrhythmias.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!