Phage-encoded Serine Integrases and Other Large Serine Recombinases.

Microbiol Spectr

Department of Biology, University of York, York, United Kingdom.

Published: August 2015

AI Article Synopsis

  • Large serine recombinases (LSRs) are enzymes that cut and recombine DNA in a precise manner, found in phage genomes and mobile elements.
  • In phage integration, LSRs target specific sites for DNA cleavage and recombination, forming an integrated prophage with two flanking regions, attL and attR, which can later facilitate excision.
  • Recent research has enhanced our understanding of LSR mechanisms, including binding specificity and control via accessory proteins like the recombination directionality factor (RDF), as well as the unique subunit rotation during the strand exchange process.

Article Abstract

The large serine recombinases (LSRs) are a family of enzymes, encoded in temperate phage genomes or on mobile elements, that precisely cut and recombine DNA in a highly controllable and predictable way. In phage integration, the LSRs act at specific sites, the attP site in the phage and the attB site in the host chromosome, where cleavage and strand exchange leads to the integrated prophage flanked by the recombinant sites attL and attR. The prophage can excise by recombination between attL and attR but this requires a phage-encoded accessory protein, the recombination directionality factor (RDF). Although the LSRs can bind specifically to all the recombination sites, only specific integrase-bound sites can pair in a synaptic complex prior to strand exchange. Recent structural information has led to a breakthrough in our understanding of the mechanism of the LSRs, notably how the LSRs bind to their substrates and how LSRs display this site-selectivity. We also understand that the RDFs exercise control over the LSRs by protein-protein interactions. Other recent work with the LSRs have contributed to our understanding of how all serine recombinases undergo strand exchange subunit rotation, facilitated by surfaces that resemble a molecular bearing.

Download full-text PDF

Source
http://dx.doi.org/10.1128/microbiolspec.MDNA3-0059-2014DOI Listing

Publication Analysis

Top Keywords

serine recombinases
12
strand exchange
12
large serine
8
lsrs
8
attl attr
8
lsrs bind
8
phage-encoded serine
4
serine integrases
4
integrases large
4
recombinases large
4

Similar Publications

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

To enable robust expression of transgenes in stem cells, recombinase-mediated cassette exchange at safe harbor loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta, and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells.

View Article and Find Full Text PDF

PLK1 overexpression suppresses homologous recombination and confers cellular sensitivity to PARP inhibition.

Sci Rep

December 2024

Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.

The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.

View Article and Find Full Text PDF

Mitigating genetic instability caused by the excision activity of the C31 integrase in .

Appl Environ Microbiol

December 2024

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.

Over the past three decades, the integrase (Int) from phage C31 has become a valuable genome engineering tool across various species. C31 Int was thought to mediate unidirectional site-specific integration ( × to and ) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision ( × to and ) at low frequencies in and , causing genetic instability in engineered strains.

View Article and Find Full Text PDF
Article Synopsis
  • * Using single-molecule FRET (smFRET) techniques, researchers provided direct evidence of this subunit rotation mechanism, observing fluctuations in FRET that align with the proposed model.
  • * They measured rotation events in a timescale of 0.4-1.1 seconds, noting multiple recombination cycles and rapid rotation in the cleaved-DNA state without intermediate ligation during a ~25-second observation period.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!