The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person's lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3-5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the important structural and functional abnormalities that predispose the urinary tract to microbial infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566164 | PMC |
http://dx.doi.org/10.1128/microbiolspec.UTI-0016-2012 | DOI Listing |
NPJ Digit Med
January 2025
Maccabi Healthcare Services, Tel Aviv, 6812509, Israel.
Urinary tract infections (UTIs) often prompt empiric outpatient antibiotic prescriptions, risking mismatches. This study evaluates the impact of "UTI Smart-Set" (UTIS), an AI-driven decision-support tool, on prescribing patterns and mismatches in a large outpatient organization. UTIS integrates machine learning forecasts of antibiotic resistance, patient data, and guidelines into a user-friendly order set for UTI management.
View Article and Find Full Text PDFSci Rep
January 2025
Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.
Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.
View Article and Find Full Text PDFNat Commun
January 2025
College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.
View Article and Find Full Text PDFJ Urol
January 2025
Division of Urology, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
Purpose: Urinary incontinence (UI) is common in nulliparous female elite athletes, but underlying pathophysiology is inadequately understood. We examined urinary symptoms and associated pelvic floor anatomy and function in this population, hypothesizing that athletes with UI would exhibit pelvic floor findings seen in older incontinent women (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!