Unlabelled: Escherichia coli RtcB exemplifies a family of GTP-dependent RNA repair/splicing enzymes that join 3'-PO4 ends to 5'-OH ends via stable RtcB-(histidinyl-N)-GMP and transient RNA3'pp5'G intermediates. E. coli RtcB also transfers GMP to a DNA 3'-PO4 end to form a stable "capped" product, DNA3'pp5'G. RtcB homologs are found in a multitude of bacterial proteomes, and many bacteria have genes encoding two or more RtcB paralogs; an extreme example is Myxococcus xanthus, which has six RtcBs. In this study, we purified, characterized, and compared the biochemical activities of three M. xanthus RtcB paralogs. We found that M. xanthus RtcB1 resembles E. coli RtcB in its ability to perform intra- and intermolecular sealing of a HORNAp substrate and capping of a DNA 3'-PO4 end. M. xanthus RtcB2 can splice HORNAp but has 5-fold-lower RNA ligase specific activity than RtcB1. In contrast, M. xanthus RtcB3 is distinctively feeble at ligating the HORNAp substrate, although it readily caps a DNA 3'-PO4 end. The novelty of M. xanthus RtcB3 is its capacity to cap DNA and RNA 5'-PO4 ends to form GppDNA and GppRNA products, respectively. As such, RtcB3 joins a growing list of enzymes (including RNA 3'-phosphate cyclase RtcA and thermophilic ATP-dependent RNA ligases) that can cap either end of a polynucleotide substrate. GppDNA formed by RtcB3 can be decapped to pDNA by the DNA repair enzyme aprataxin.
Importance: RtcB enzymes comprise a widely distributed family of RNA 3'-PO4 ligases distinguished by their formation of 3'-GMP-capped RNAppG and/or DNAppG polynucleotides. The mechanism and biochemical repertoire of E. coli RtcB are well studied, but it is unclear whether its properties apply to the many bacteria that have genes encoding multiple RtcB paralogs. A comparison of the biochemical activities of three M. xanthus paralogs, RtcB1, RtcB2, and RtcB3, shows that not all RtcBs are created equal. The standout findings concern RtcB3, which is (i) inactive as an RNA 3'-PO4 ligase but adept at capping a DNA 3'-PO4 end and (ii) able to cap DNA and RNA 5'-PO4 ends to form GppDNA and GppRNA, respectively. The GppDNA and GppRNA capping reactions are novel nucleic acid modifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621082 | PMC |
http://dx.doi.org/10.1128/JB.00631-15 | DOI Listing |
J Bacteriol
January 2023
Department of Microbiology, University of Georgia, Athens, Georgia, USA.
The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate.
View Article and Find Full Text PDFRNA Biol
January 2022
Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD, Australia.
Given the challenges for the experimental determination of RNA tertiary structures, probing solvent accessibility has become increasingly important to gain functional insights. Among various chemical probes developed, backbone-cleaving hydroxyl radical is the only one that can provide unbiased detection of all accessible nucleotides. However, the readouts have been based on reverse transcription (RT) stop at the cleaving sites, which are prone to false positives due to PCR amplification bias, early drop-off of reverse transcriptase, and the use of random primers in RT reaction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs.
View Article and Find Full Text PDFInt J Mol Sci
June 2022
Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them.
View Article and Find Full Text PDFBiol Chem
July 2022
Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany.
Self-cleaving ribozymes are catalytic RNAs and can be found in all domains of life. They catalyze a site-specific cleavage that results in a 5' fragment with a 2',3' cyclic phosphate (2',3' cP) and a 3' fragment with a 5' hydroxyl (5' OH) end. Recently, several strategies to enrich self-cleaving ribozymes by targeted biochemical methods have been introduced by us and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!