Prevention of microbially induced corrosion (MIC) is of great significance in many environmental applications. Here, we report the use of an ultra-thin, graphene skin (Gr) as a superior anti-MIC coating over two commercial polymeric coatings, Parylene-C (PA) and Polyurethane (PU). We find that Nickel (Ni) dissolution in a corrosion cell with Gr-coated Ni is an order of magnitude lower than that of PA and PU coated electrodes. Electrochemical analysis reveals that the Gr coating offers ~10 and ~100 fold improvement in MIC resistance over PU and PA coatings respectively. This finding is remarkable considering that the Gr coating (1-2 nm) is ~25 and ~4000 times thinner than the PA (40-50 nm), and PU coatings (20-80 μm), respectively. Conventional polymer coatings are either non-conformal when deposited or degrade under the action of microbial processes, while the electro-chemically inert graphene coating is both resistant to microbial attack and is extremely conformal and defect-free. Finally, we provide a brief discussion regarding the effectiveness of as-grown vs. transferred graphene films for anti-MIC applications. While the as-grown graphene films are devoid of major defects, wet transfer of graphene is shown to introduce large scale defects that make it less suitable for the current application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563365PMC
http://dx.doi.org/10.1038/srep13858DOI Listing

Publication Analysis

Top Keywords

polymer coatings
8
prevention microbially
8
microbially induced
8
induced corrosion
8
graphene films
8
coatings
5
graphene
5
superiority graphene
4
graphene polymer
4
coatings prevention
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!