A solar reactor was designed to perform the conversion of starch to ethanol in a single step. An aqueous starch solution (5 wt %) was fed into the reactor bed charged with Baker's yeast (Saccharomyces cerevisiae) and amylase, resulting in approximately 2.5 wt % ethanol collected daily (ca. 25 mL day(-1) ). A significant amount of ethanol (38 g) was collected over 63 days, corresponding to 84 % of the theoretical yield. The production of ethanol without additional energy input highlights the significance of this new process. The ethanol produced was also demonstrated as a potential fuel for direct ethanol fuel cells. Additionally, the secondary metabolite glycerol was fully reduced to a value-added product 1,3-propanediol, which is the first example of a fungal strain (Baker's yeast) converting glycerol in situ to 1,3-propanediol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201500469 | DOI Listing |
Cell Mol Life Sci
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Metabolism is a fundamental characteristic of life. In 2010, we discovered that the metabolic enzyme CTP synthase (CTPS) can assemble a snake like structure inside cells, which we call the cytoophidium. Including CTPS, an increasing number of metabolic enzymes have been found to form cytoophidia in cells.
View Article and Find Full Text PDFBiotechnol J
January 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids.
View Article and Find Full Text PDFNat Commun
January 2025
School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Agriculture, Henan University, Kaifeng 475004, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore; Food Laboratory of Zhongyuan, Luohe 462000, China. Electronic address:
This study explores the impact of multi-species co-fermentation on the thermal properties of wheat starch, emphasizing the innovative use of fish collagen as an additive. The effects of adding different levels of fish collagen (0 %, 3 %, 6 %, 9 %, 12 %, and 15 %) on the thermal properties of starch were investigated during co-fermentation with Lactobacillus plantarum and Saccharomyces cerevisiae. Utilizing analytical techniques such as X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), we observed a significant increase in the degree of order from 1.
View Article and Find Full Text PDFElife
January 2025
Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States.
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!