MicroRNAs (miR) are small non-coding RNAs involved in the immune response regulation. miR-155 has been attributed a major pro-inflammatory role in the pathogenesis of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Here, a role of miR-155 in re-activation of encephalitogenic CD4(+) T cells was investigated. Dark Agouti rats were immunized with myelin basic protein (MBP) emulsified in complete Freund's adjuvant. CD4(+) T cells were purified from draining lymph node cells (DLNC) obtained in the inductive phase and from spinal cord immune cells (SCIC) isolated at the peak of EAE. CD4(+) T cells obtained from SCIC (i.e., in vivo re-activated cells) had markedly higher expression of miR-155 in comparison to those purified from DLNC (not re-activated). Likewise, in vitro re-activation of DLNC with MBP led to increase in miR-155 expression. Further, DLNC and DLNC CD4(+) T cells were transfected with an inhibitor of miR-155 during in vitro re-activation. As a result, expression of important CD4(+) T cell effector cytokines IFN-γ and IL-17, but not of regulatory cytokines IL-10 and TGF-β, was reduced. These results imply that miR-155 supports re-activation of encephalitogenic CD4(+) T cells. Our results contribute to a view that miR-155 might be a valuable target in multiple sclerosis therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2015.08.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!