Algal competition in a water column with excessive dioxide in the atmosphere.

J Math Biol

Department of Biology and Program in Earth and Environmental Sciences, University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA.

Published: June 2016

This paper deals with a resource competition model of two algal species in a water column with excessive dioxide in the atmosphere. First, the uniqueness of positive steady state solutions to the single-species model with two resources is established by the application of the degree theory and the strong maximum principle for the cooperative system. Second, some asymptotic behavior of the single-species model is given by comparison principle and uniform persistence theory. Third, the coexistence solutions to the competition system of two species with two substitutable resources are obtained by global bifurcation theory, various estimates and the strong maximum principle for the cooperative system. Numerical simulations are used to illustrate the outcomes of coexistence and competitive exclusion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-015-0926-8DOI Listing

Publication Analysis

Top Keywords

water column
8
column excessive
8
excessive dioxide
8
dioxide atmosphere
8
single-species model
8
strong maximum
8
maximum principle
8
principle cooperative
8
cooperative system
8
algal competition
4

Similar Publications

Integrated analysis of marked and count data to characterize fine-scale stream fish movement.

Oecologia

January 2025

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.

View Article and Find Full Text PDF

Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.

View Article and Find Full Text PDF

Microplastics Settling in Turbid Water: Impacts of Sediments-Induced Flow Patterns on Particle Deposition Rates.

Environ Sci Technol

January 2025

Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland.

When microplastics (MPs) enter water bodies, they undergo various transport processes, including sedimentation, which can be influenced by factors such as particle size, density, and interactions with other particles. Surface waters contain suspended natural particles (e.g.

View Article and Find Full Text PDF

Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.

Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.

View Article and Find Full Text PDF

Pelagic shark intestine as a potential temporary sink for plastic and non-plastic particles.

Mar Environ Res

January 2025

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China.

Highly migratory pelagic sharks have the potential to serve as carriers of particle contamination in a vast three-dimensional space. We investigate the occurrence, abundance and characteristics of plastic and non-plastic particles in the scroll intestine of the blue shark (Prionace glauca), one of the most abundant pelagic shark species worldwide. We detected both plastic and non-plastic particles in all sections of the intestine, with the posterior region exhibiting the highest concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!