A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-scale plant growth chamber design for elevated pCO2 and δ13C studies. | LitMetric

Large-scale plant growth chamber design for elevated pCO2 and δ13C studies.

Rapid Commun Mass Spectrom

Department of Geology and Geophysics, University of Hawaii, Honolulu, HI, 96822, USA.

Published: March 2015

Rationale: Throughout at least the next century, CO(2) fertilization and environmental stresses (e.g. nutrient, moisture, insect herbivory) are predicted to affect yields of economically important crop species. Stable isotopes of carbon are used to study plant stresses, which affect yields, but a growth chamber design that can be used to isolate the effects of environmental stresses on crop-sized species through precise maintenance of pCO(2) levels and the δ(13)C values of atmospheric CO(2) (δ(13) C(CO2)) is lacking.

Methods: We designed and built low-cost plant growth chambers for growing staple crop species under precise pCO(2) and δ(13) C(CO2) conditions. Over the course of 14 hours, we assessed for pCO(2) stability at two targeted levels (ambient, ~400 ppm; and 2×, ~800 ppm) and measured the δ(13) C(CO2) value within the two chambers using a stable isotope ratio mass spectrometer. We also compared the temperature and relative humidity conditions within the two growth chambers, and in the ambient, outside air.

Results: Across our experimental period, we achieved δ(13) C(CO2) stability (ambient: -8.05 ± 0.17‰; elevated: -12.99 ± 0.29‰) that showed nearly half the variability of any previously reported values for other chamber designs. The stability of the pCO(2) conditions (ambient: 406 ± 3 ppm; elevated: 793 ± 54 ppm) was comparable with that in previous studies, but our design provided ~8 times more growing space than previous chamber designs. We also measured nearly identical temperature and relative humidity conditions for the two chambers throughout the experiment.

Conclusions: Our growth chamber design marks a significant improvement in our ability to test for plant stress across a range of future pCO(2) scenarios. Through significant improvement in δ(13) C(CO2) stability and increased chamber size, small changes in carbon isotope fractionation can be used to assess stress in crop species under specific environmental (temperature, relative humidity, pCO(2)) conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7121DOI Listing

Publication Analysis

Top Keywords

δ13 cco2
20
growth chamber
12
chamber design
12
crop species
12
temperature relative
12
relative humidity
12
plant growth
8
environmental stresses
8
affect yields
8
species precise
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!