Rationale: PDO cheeses, such as Parmigiano Reggiano and Grana Padano, which cost more than double generic similar cheeses, must be protected against mislabelling. The aim of this study was to validate the methods for the isotopic and elemental analysis of cheese, in order to support official recognition of their use in authenticity assessment.

Methods: An international collaborative study based on blind duplicates of seven hard cheeses was performed according to the IUPAC protocol and ISO Standards 5725/2004 and 13528/2005. The H, C, N and S stable isotope ratios of defatted cheese determined using Isotope Ratio Mass Spectrometry (IRMS) and the content of Li, Na, Mn, Fe, Cu, Se, Rb, Sr, Mo, Ba, Re, Bi, U in cheese after acid microwave digestion using Inductively Coupled Plasma Mass Spectrometry or Optical Emission Spectrometry (ICP-MS or -OES) were measured in 13 different laboratories.

Results: The average standard deviations of repeatability (sr) and reproducibility (sR) were 0.1 and 0.2 ‰ for δ(13)C values, 0.1 and 0.3 ‰ for δ(15)N values, 2 and 3 ‰ for δ(2)H values, and 0.4 and 0.6 ‰ for δ(34)S values, thus comparable with results of official methods and the literature for other food matrices. For elemental data, the average RSDr and RSDR values ranged between 2 and 11% and between 9 and 28%, respectively, consistent with methods reported by the FDA and in the literature for cheese.

Conclusions: The validation data obtained here can be submitted to the standardisation agencies to obtain official recognition for the methods, which is fundamental when they are used in commercial disputes and legal debates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7117DOI Listing

Publication Analysis

Top Keywords

values ‰
12
elemental analysis
8
analysis cheese
8
international collaborative
8
collaborative study
8
official recognition
8
mass spectrometry
8
values
5
validation methods
4
methods stable
4

Similar Publications

Purpose: Especially in Europe, amino acid PET is increasingly integrated into multidisciplinary neuro-oncological tumor boards (MNTBs) to overcome diagnostic uncertainties such as treatment-related changes. We evaluated the accuracy of MNTB decisions that included the O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET information compared with FET PET results alone to differentiate tumor relapse from treatment-related changes.

Patients And Methods: In a single academic center, we retrospectively evaluated 180 MNTB decisions of 151 patients with CNS WHO grade 3 or 4 gliomas (n = 122) or brain metastases (n = 29) presenting equivocal MRI findings following anticancer treatment.

View Article and Find Full Text PDF

Steak samples were collected from the longissimus lumborum muscles of beef carcasses (Canada AA, n = 1505; Canada AAA, n = 1363) over a 3-year period. Steaks were aged for 14 d, and tenderness was determined by slice shear force (SSF). Metabolomic profiling of beef samples was performed using rapid evaporative ionization mass spectrometry (REIMS) (N = 2853).

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Purpose: Monocyte chemoattractant protein-1 (MCP-1/CCL2) plays a key role for infiltration of monocytes/macrophages and studies have demonstrated that the MCP-1/C-C chemokine receptor 2 (CCR2) axis might be involved in the pathogenesis and progression of abdominal aortic aneurysms (AAA). Molecular imaging has shown potential for human clinical research studies. We evaluated the expression of CCR2 in patients with small AAA using single-photon emission computed tomography (SPECT) with the technetium-99m-6-hydrazinylnicotinoyl-C-C-chemokine receptor-2 ligand (Tc-HYNIC-CCR2-L).

View Article and Find Full Text PDF

There is currently no clinically valid biomarker for predicting the growth and prognosis of abdominal aortic aneurysms (AAA). The most promising candidates with the highest diagnostic values are plasma D-dimers and markers of activated neutrophils, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!