A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The identification of an integral membrane, cytochrome c urate oxidase completes the catalytic repertoire of a therapeutic enzyme. | LitMetric

In living organisms, the conversion of urate into allantoin requires three consecutive enzymes. The pathway was lost in hominid, predisposing humans to hyperuricemia and gout. Among other species, the genomic distribution of the two last enzymes of the pathway is wider than that of urate oxidase (Uox), suggesting the presence of unknown genes encoding Uox. Here we combine gene network analysis with association rule learning to identify the missing urate oxidase. In contrast with the known soluble Uox, the identified gene (puuD) encodes a membrane protein with a C-terminal cytochrome c. The 8-helix transmembrane domain corresponds to DUF989, a family without similarity to known proteins. Gene deletion in a PuuD-encoding organism (Agrobacterium fabrum) abolished urate degradation capacity; the phenotype was fully restored by complementation with a cytosolic Uox from zebrafish. Consistent with H2O2 production by zfUox, urate oxidation in the complemented strain caused a four-fold increase of catalase. No increase was observed in the wild-type, suggesting that urate oxidation by PuuD proceeds through cytochrome c-mediated electron transfer. These findings identify a missing link in purine catabolism, assign a biochemical activity to a domain of unknown function (DUF989), and complete the catalytic repertoire of an enzyme useful for human therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562309PMC
http://dx.doi.org/10.1038/srep13798DOI Listing

Publication Analysis

Top Keywords

urate oxidase
12
catalytic repertoire
8
enzymes pathway
8
identify missing
8
urate oxidation
8
urate
7
identification integral
4
integral membrane
4
membrane cytochrome
4
cytochrome urate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!