Homing of allogeneic donor T cells to recipient tissue is imperative for the development of acute graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In this study we show that alteration of T cell homing due to integrin-β7 deficiency on T cells or its ligand MAdCAM-1 in BMT recipients contributes to the pathophysiology of experimental GVHD. In contrast, lack of CC chemokine receptor 9 on donor T cells alters tissue homing but does not impact GVHD survival. We further demonstrate that MAdCAM-1 is aberrantly expressed in hepatic murine GVHD as well as in patients with active liver GVHD. However, infiltration of donor T cells in gut but not liver was dependent of MAdCAM-1 expression, indicating, that homing and/or retention of donor T cells rests on divergent molecular pathways depending on the GVHD target tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2015.08.038DOI Listing

Publication Analysis

Top Keywords

donor cells
16
chemokine receptor
8
acute graft-versus-host
8
graft-versus-host disease
8
gvhd
6
cells
5
differential effects
4
effects gut-homing
4
gut-homing molecules
4
molecules chemokine
4

Similar Publications

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Objective: The objective of this study was to explore the possibility of treating heart failure in rats by delivering mRNA of 24-dehydrocholesterol reductase (DHCR24) into the body through lipid nanoparticles (LNPs).

Methods: We established a heart failure rat model using doxorubicin. The experiment was divided into blank, model, mRNA stock solution cardiac injection, mRNA stock solution intravenous injection, LNP-mRNA stock solution cardiac injection, and LNP-mRNA stock solution intravenous injection groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!