Importance: Anemia affects most pregnant African women and is predominantly due to iron deficiency, but antenatal iron supplementation has uncertain health benefits and can increase the malaria burden.
Objective: To measure the effect of antenatal iron supplementation on maternal Plasmodium infection risk, maternal iron status, and neonatal outcomes.
Design, Setting, And Participants: Randomized placebo-controlled trial conducted October 2011 through April 2013 in a malaria endemic area among 470 rural Kenyan women aged 15 to 45 years with singleton pregnancies, gestational age of 13 to 23 weeks, and hemoglobin concentration of 9 g/dL or greater. All women received 5.7 mg iron/day through flour fortification during intervention, and usual intermittent preventive treatment against malaria was given.
Interventions: Supervised daily supplementation with 60 mg of elemental iron (as ferrous fumarate, n = 237 women) or placebo (n = 233) from randomization until 1 month postpartum.
Main Outcomes And Measures: Primary outcome was maternal Plasmodium infection at birth. Predefined secondary outcomes were birth weight and gestational age at delivery, intrauterine growth, and maternal and infant iron status at 1 month after birth.
Results: Among the 470 participating women, 40 women (22 iron, 18 placebo) were lost to follow-up or excluded at birth; 12 mothers were lost to follow-up postpartum (5 iron, 7 placebo). At baseline, 190 of 318 women (59.7%) were iron-deficient. In intention-to-treat analysis, comparison of women who received iron vs placebo, respectively, yielded the following results at birth: Plasmodium infection risk: 50.9% vs 52.1% (crude difference, -1.2%, 95% CI, -11.8% to 9.5%; P = .83); birth weight: 3202 g vs 3053 g (crude difference, 150 g, 95% CI, 56 to 244; P = .002); birth-weight-for-gestational-age z score: 0.52 vs 0.31 (crude difference, 0.21, 95% CI, -0.11 to 0.52; P = .20); and at 1 month after birth: maternal hemoglobin concentration: 12.89 g/dL vs 11.99 g/dL (crude difference, 0.90 g/dL, 95% CI, 0.61 to 1.19; P < .001); geometric mean maternal plasma ferritin concentration: 32.1 µg/L vs 14.4 µg/L (crude difference, 123.4%, 95% CI, 85.5% to 169.1%; P < .001); geometric mean neonatal plasma ferritin concentration: 163.0 µg/L vs 138.7 µg/L (crude difference, 17.5%, 95% CI, 2.4% to 34.8%; P = .02). Serious adverse events were reported for 9 and 12 women who received iron and placebo, respectively. There was no evidence that intervention effects on Plasmodium infection risk were modified by intermittent preventive treatment use.
Conclusions And Relevance: Among rural Kenyan women with singleton pregnancies, administration of daily iron supplementation, compared with administration of placebo, resulted in no significant differences in overall maternal Plasmodium infection risk. Iron supplementation led to increased birth weight.
Trial Registration: clinicaltrials.gov Identifier: NCT01308112.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/jama.2015.9496 | DOI Listing |
Mol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFChanges in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics.
View Article and Find Full Text PDFMalariaworld J
January 2025
Biosciences Training and Research Unit (UFR), Felix Houphouët-Boigny University, Abidjan, Côte d'Ivoire.
Background: has developed resistance to almost all the antimalarial drugs currently in use. This resistance has been and remains one of the greatest threats to the control and elimination of malaria. The use of molecular markers of resistance to monitor the emergence and spread of antimalarial drug-resistant parasite strains has proved highly effective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!