A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695007PMC
http://dx.doi.org/10.18632/oncotarget.4826DOI Listing

Publication Analysis

Top Keywords

local radiation
12
locally irradiated
12
irradiated mice
12
colon carcinoma
12
carcinoma cells
12
macrophage-induced metastasis
8
host response
8
respective controls
8
irradiated tumors
8
metastasis
7

Similar Publications

Background: De-intensification of anti-cancer therapy without significantly affecting outcomes is an important goal. Omission of axillary surgery or breast radiation is considered a reasonable option in elderly patients with early-stage breast cancer and good prognostic factors. Data on avoidance of both axillary surgery and radiation therapy (RT) is scarce and inconclusive.

View Article and Find Full Text PDF

Purpose Of The Review: This narrative review aims to provide an overview of recently completed randomized trials and expert consensus recommendations, and their implications for clinical practice and future trial design in patients with de-novo esophagogastric oligometastatic disease (OMD).

Recent Findings: The IKF-575/RENAISSANCE phase III trial showed no significant overall survival difference between systemic therapy alone and systemic therapy combined with local therapy for patients with gastric or gastroesophageal junction cancer and de-novo OMD, except for patients with retroperitoneal lymph node metastases only. The ESO-Shanghai 13 phase II trial demonstrated superiority of adding local therapy to systemic therapy for progression-free and overall survival in oligometastatic esophageal squamous cell carcinoma.

View Article and Find Full Text PDF

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Determinants of vacancy formation and migration in high-entropy alloys.

Sci Adv

January 2025

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.

Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!