Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exogenously administered chemically modified apelin-12 (MA) has been shown to exhibit protective effects in myocardial ischemia/reperfusion (I/R) injury. They include reduction of ROS formation, cell death and cardiometabolic abnormalities. The aim of the present study was to explore the role of the underlying signaling mechanisms involved in cardioprotection afforded by MA. Isolated perfused working rat hearts subjected to global ischemia and anaesthetized rats in vivo exposed to LAD coronary artery occlusion were used. Myocardial infarct size, cell membrane damage, cardiac dysfunction and metabolic state of the heart were used as indices of I/R injury at the end of reperfusion. Administration of specific inhibitors of MEK1/2, PI3K, NO synthase (NOS) or the mitochondrial ATP-sensitive K(+) (mito KATP) channels (UO126, LY294002, L-NAME or 5-hydroxydecanoate, respectively) reduced protective efficacy of MA in both models of I/R injury. This was evidenced by abrogation of infarct size limitation, deterioration of cardiac function recovery, and attenuation of metabolic restoration and sarcolemmal integrity. An enhancement of functional and metabolic recovery in isolated reperfused hearts treated with MA was suppressed by U-73122, chelerythrine, amiloride or KB-R7943 (inhibitors of phospholipase С (PLC), protein kinase C (PKC), Na(+)/H(+) or Na(+)/Ca(2+) exchange, respectively). Additionally, co-infusion of MA with amiloride or L-NAME reduced the integrity of cell membranes at early reperfusion compared with the effect of peptide alone. In conclusion, cardioprotection with MA is mediated by signaling via PLC and survival kinases, PKC, PI3K, and MEK1/2, with activation of downstream targets, NOS and mito KATP channels, and the sarcolemmal Na(+)/H(+) and Na(+)/Ca(2+) exchangers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2015.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!