Mesenchymal stem cells (MSCs) have been shown to elicit cardio-protective effects in sepsis. However, the underlying mechanism remains obscure. While recent studies have indicated that miR-223 is highly enriched in MSC-derived exosomes, whether exosomal miR-223 contributes to MSC-mediated cardio-protection in sepsis is unknown. In this study, loss-of-function approach was utilized, and sepsis was induced by cecal ligation and puncture (CLP). We observed that injection of miR-223-KO MSCs at 1 h post-CLP did not confer protection against CLP-triggered cardiac dysfunction, apoptosis and inflammatory response. However, WT-MSCs were able to provide protection which was associated with exosome release. Next, treatment of CLP mice with exosomes released from miR-223-KO MSCs significantly exaggerated sepsis-induced injury. Conversely, WT-MSC-derived-exosomes displayed protective effects. Mechanistically, we identified that miR-223-KO exosomes contained higher levels of Sema3A and Stat3, two known targets of miR-223 (5p &3p), than WT-exosomes. Accordingly, these exosomal proteins were transferred to cardiomyocytes, leading to increased inflammation and cell death. By contrast, WT-exosomes encased higher levels of miR-223, which could be delivered to cardiomyocytes, resulting in down-regulation of Sema3A and Stat3. These data for the first time indicate that exosomal miR-223 plays an essential role for MSC-induced cardio-protection in sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562230PMC
http://dx.doi.org/10.1038/srep13721DOI Listing

Publication Analysis

Top Keywords

exosomal mir-223
12
mir-223 contributes
8
mesenchymal stem
8
cardio-protection sepsis
8
mir-223-ko mscs
8
higher levels
8
sema3a stat3
8
sepsis
5
mir-223
5
exosomal
4

Similar Publications

Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.

Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.

View Article and Find Full Text PDF

Purpose: Our previous study indicated that exosomes derived from mouse adipose-derived mesenchymal stem cells (mADSC-Exos) alleviated the benzalkonium chloride (BAC)-induced mouse dry eye model. However, the specific active molecules in mADSC-Exos that contribute to anti-dry eye therapy remain unidentified. In this study, we aimed to investigate the efficacy and mechanisms of miR-223-3p derived from mADSC-Exos in dry eye models.

View Article and Find Full Text PDF

MicroRNAs as Epigenetic Regulators of Obesity.

Adv Exp Med Biol

September 2024

Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis.

View Article and Find Full Text PDF

Tumor-Derived Exosomal miR-143-3p Induces Macrophage M2 Polarization to Cause Radiation Resistance in Locally Advanced Esophageal Squamous Cell Carcinoma.

Int J Mol Sci

May 2024

Laboratory of Cell and Molecular Biology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.

We aimed to determine whether monitoring tumor-derived exosomal microRNAs (miRNAs) could be used to assess radiotherapeutic sensitivity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). RNA sequencing was employed to conduct a comparative analysis of miRNA expression levels during radiotherapy, focusing on identifying miRNAs associated with progression. Electron microscopy confirmed the existence of exosomes, and co-cultivation assays and immunofluorescence validated their capacity to infiltrate macrophages.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!