Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles.

J Hazard Mater

Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, India. Electronic address:

Published: January 2016

A novel nanocomposite derived from cationically modified guar gum and in-situ incorporated SiO2 NP (cat-GG/SiO2) has been developed. The cat-GG has been synthesised by grafting poly(2-(diethylamino)ethyl methacrylate) on GG backbone. Various analyses endorse the suitability of cat-GG as well-organized template for the development of homogeneous SiO2 NPs. Dye adsorption studies predict that cat-GG/SiO2 efficiently and selectively adsorb anionic dyes (reactive blue-RB and Congo red-CR) from mixture of dye solutions. This is because of high surface area, multifunctional chelating H-bonding interactions and electrostatic interactions of cationic adsorbent with anionic dyes. Dyes adsorbed on the composite surface are desorbed reversibly using pH 10 stripping solution. Besides, cat-GG/SiO2 has been recycled efficiently with no prominent loss of dye uptake capacity, even after 4 adsorption-desorption cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2015.08.042DOI Listing

Publication Analysis

Top Keywords

anionic dyes
12
novel nanocomposite
8
nanocomposite derived
8
derived cationically
8
cationically modified
8
modified guar
8
guar gum
8
selective removal
4
removal toxic
4
toxic anionic
4

Similar Publications

Comparative photocatalytic degradation of cationic rhodamine B and anionic bromocresol green using reduced ZnO: A detailed kinetic modeling approach.

Chemosphere

January 2025

Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840 South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium. Electronic address:

The photocatalytic degradation of rhodamine B (RhB), a cationic dye, and bromocresol green (BCG), an anionic dye, was investigated using oxygen vacancy-enriched ZnO as the catalyst. These dyes were selected due to their differing charges and molecular structures, allowing for a deeper exploration of how these characteristics impact the degradation process. The catalyst was prepared by reducing ZnO with 10% H/Ar gas at 500°C, and the introduction of oxygen vacancies was confirmed using various characterization techniques.

View Article and Find Full Text PDF

This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.

View Article and Find Full Text PDF

Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.

View Article and Find Full Text PDF

Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au.

Mikrochim Acta

January 2025

Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.

A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!