Elevated Phospholipid Transfer Protein in Subjects with Multiple Sclerosis.

J Lipids

BVBiomed Ltd., Oregon Bioscience Incubator, 4640 SW Macadam Avenue No. 200, Portland, OR 97239, USA.

Published: September 2015

An anomaly in the plasma proteins of patients with multiple sclerosis detectable on SDS-PAGE has been reported. The molecular weight of the anomaly was the same as the phospholipid transfer protein. A metabolic protein was involved in lipid homeostasis and remodeling of the high density lipoproteins. We have identified the anomaly as the phospholipid transfer protein by western blot using antiphospholipid transfer antibodies. Activity assays showed that the phospholipid transfer activity was elevated in fasted plasma samples from subjects with MS compared to controls. Sequence analysis of the gene encoding the phospholipid transfer protein did not identify any mutations in the genetic structure, suggesting that the increase in activity was not due to structural changes in the protein, but may be due to one of the other proteins with which it forms active complexes. Altered phospholipid transfer activity is important because it could be implicated in the decreased lipid uptake and abnormal myelin lipids observed in multiple sclerosis. It has been shown that alteration in myelin lipid content is an epitope for autoimmunity. Therefore, lipid changes due to a defect in phospholipid transfer and/or uptake could potentially influence the course of the disease. Further research is needed to elucidate the role of the phospholipid transfer protein in subjects with multiple sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549613PMC
http://dx.doi.org/10.1155/2015/518654DOI Listing

Publication Analysis

Top Keywords

phospholipid transfer
32
transfer protein
20
multiple sclerosis
16
transfer
9
protein subjects
8
subjects multiple
8
anomaly phospholipid
8
transfer activity
8
protein
7
phospholipid
7

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Blockade of TIPE2-Mediated Ferroptosis of Myeloid-Derived Suppressor Cells Achieves the Full Potential of Combinatory Ferroptosis and Anti-PD-L1 Cancer Immunotherapy.

Cells

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Although immune checkpoint blockade (ICB) therapy has attained unprecedented clinical success, the tolerance and immune suppression mechanisms evolved by tumor cells and their tumor microenvironment (TME) hinder its maximum anti-cancer potential. Ferroptosis therapy can partially improve the efficacy of ICB, but it is still subject to immune suppression by myeloid-derived suppressor cells (MDSCs) in the TME. Recent research suggests that an MDSC blockade can unleash the full therapeutic potential of the combined therapy of ferroptosis and ICB in liver cancer treatment.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Background: Phospholipid transfer protein (PLTP), a glycoprotein widely expressed in the body, is primarily involved in plasma lipoprotein metabolism. Previous research has demonstrated that PLTP can exert anti-inflammatory effects and improve individual survival in patients with sepsis and endotoxemia by neutralizing LPS and facilitating LPS clearance. However, the role of PLTP in sepsis-associated acute kidney injury (SA-AKI) and the specific mechanism of its protective effects are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!