The biodistribution of biodegradable nanoparticles can be difficult to quantify. We report a method using time resolved fluorescence (TRF) from a lanthanide chelate to minimize background autofluorescence and maximize the signal to noise ratio to detect biodegradable nanoparticle distribution in mice. Specifically, antenna chelates containing europium were entrapped within nanoparticles composed of polylactic acid-polyethylene glycol diblock copolymers. Tissue accumulation of nanoparticles following intravenous injection was quantified in mice. The TRF of the nanoparticles was found to diminish as a second order function in the presence of serum and tissue compositions interfered with the europium signal. Both phenomena were corrected by linearization of the signal function and calculation of tissue-specific interference, respectively. Overall, the method is simple and robust with a detection limit five times greater than standard fluorescent probes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561907PMC
http://dx.doi.org/10.1038/srep13177DOI Listing

Publication Analysis

Top Keywords

biodegradable nanoparticle
8
simple sensitive
4
sensitive method
4
method quantify
4
quantify biodegradable
4
nanoparticle biodistribution
4
biodistribution europium
4
europium chelates
4
chelates biodistribution
4
biodistribution biodegradable
4

Similar Publications

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light.

View Article and Find Full Text PDF

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!