Clique-Based Clustering of Correlated SNPs in a Gene Can Improve Performance of Gene-Based Multi-Bin Linear Combination Test.

Biomed Res Int

Prosserman Centre for Health Research, The Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9 ; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada M5T 3M7.

Published: June 2016

Gene-based analysis of multiple single nucleotide polymorphisms (SNPs) in a gene region is an alternative to single SNP analysis. The multi-bin linear combination test (MLC) proposed in previous studies utilizes the correlation among SNPs within a gene to construct a gene-based global test. SNPs are partitioned into clusters of highly correlated SNPs, and the MLC test statistic quadratically combines linear combination statistics constructed for each cluster. The test has degrees of freedom equal to the number of clusters and can be more powerful than a fully quadratic or fully linear test statistic. In this study, we develop a new SNP clustering algorithm designed to find cliques, which are complete subnetworks of SNPs with all pairwise correlations above a threshold. We evaluate the performance of the MLC test using the clique-based CLQ algorithm versus using the tag-SNP-based LDSelect algorithm. In our numerical power calculations we observed that the two clustering algorithms produce identical clusters about 40~60% of the time, yielding similar power on average. However, because the CLQ algorithm tends to produce smaller clusters with stronger positive correlation, the MLC test is less likely to be affected by the occurrence of opposing signs in the individual SNP effect coefficients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539439PMC
http://dx.doi.org/10.1155/2015/852341DOI Listing

Publication Analysis

Top Keywords

snps gene
12
linear combination
12
mlc test
12
correlated snps
8
multi-bin linear
8
test
8
combination test
8
test statistic
8
clq algorithm
8
snps
6

Similar Publications

Atherosclerotic vascular changes can begin during childhood, providing risk for cardiovascular disease (CVD) in adulthood. Identifiable risk factors such as dyslipidemia accelerate this process for some children. The apolipoprotein B (APOB) gene could help explain the inter-individual variability in lipid levels among young individuals and identify groups that require greater attention to prevent CVD.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.

View Article and Find Full Text PDF

Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.

View Article and Find Full Text PDF

Background: There are no studies belong NOTCH2 gene polymorphism in relation to reproductive and productive traits in Holstein cattle. The objective of the present study was to investigate the effect of NOTCH2 gene polymorphisms on productive and reproductive performance of fertile and anestrum cattle.

Methods: The cattle were classified into anestrus for 3-12 months postpartum (n = 115, 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!