We investigated the solvent effects on the N-H bond photodisociation dynamics of aniline (PhNH2) in clusters using velocity map imaging (VMI). The VMI experiment was accompanied by a time-of-flight mass spectrometry after electron ionization to reveal the cluster nature. The H-fragment images were recorded at 243 nm in various expansion regimes corresponding to different species: isolated molecules; small (PhNH2)N, N ≤ 3, clusters; larger (PhNH2)N, N ≥ 10; small mixed PhNH2·(H2O)N, N ≤ 10, clusters; and individual PhNH2 molecules deposited on large (H2O)N, N̄ = 430. The H-fragment kinetic energy distributions exhibit fast fragments around 0.8 eV (A) assigned previously to a direct dissociation along a repulsive πσ* state potential, and slow statistical fragments peaking near 0.2 eV (B). In the aniline clusters the contribution of fast fragments (A) decreases relatively to (B) with increasing cluster size. A similar effect is observed when aniline is solvated with water molecules. The experimental data are interpreted with ab initio calculations. Cluster structures were calculated with both N-H bonds of an aniline molecule participating in hydrogen bonding, as well as the ones with free N-H bonds. The latter ones yield preferentially the fast fragments as the isolated molecule. For N-H engaged in hydrogen bonding a barrier increased along the N-H coordinate on the dissociative πσ* state potential surface, and also the energy of πσ*/S0 conical intersection increased. Thus the fast dissociation channel was closed stabilizing the molecule in clusters. The population could be funnelled through other conical intersections into the hot ground state which decayed statistically, yielding the slow H-fragments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp04485eDOI Listing

Publication Analysis

Top Keywords

n-h bonds
12
fast fragments
12
≤ clusters
8
πσ* state
8
state potential
8
hydrogen bonding
8
n-h
6
clusters
6
photodissociation aniline
4
aniline n-h
4

Similar Publications

Quantum Chemical NMR Spectroscopic Structural Analysis in Solution: The Investigation of 3-Indoleacetic Acid Dimer Formation in Chloroform and DMSO Solution.

Magn Reson Chem

January 2025

Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.

We present a DFT-PCM NMR study of 3-indoleacetic acid (3-IAA), used as a working example, including explicit solvent molecules, named PCM-nCHCl, PCM-nDMSO (n = 0, 2, 4, 8, 14, 20, and 25), to investigate the dimer formation in solution. Apart from well-known cyclic (I) and open (II) acetic acid (AA) dimers, two new structures were located on DFT-PCM potential energy surface (PES) for 3-IAA named quasicyclic A (III) and quasicyclic B (IV), the last one having N-H…O hydrogen bond (instead of O-H…O). In addition, four other structures having π-π type interactions named V, VI, VII, and VIII were also obtained completing the sample on the PES.

View Article and Find Full Text PDF

A Cu-promoted highly chemoselective dimerization of 5-aminopyrazoles to produce pyrazole-fused pyridazines and pyrazines is reported. The protocol generates switchable products via the direct coupling of C-H/N-H, C-H/C-H and N-H/N-H bonds, with the merits of broad substrate scope and high functional group compatibility. Gram-scale experiments demonstrated the potential applications of this reaction.

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

The hydration mechanism of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a relevant marker of secondary organic aerosol formation from the atmospheric oxidation of α-pinene, has been investigated using the matrix-isolation infrared spectroscopy technique. The experimental results were supported by theoretical calculations. Monomers of MBTCA and heterocomplexes MBTCA-(HO) were identified.

View Article and Find Full Text PDF

Synthesis and diverse crystal packing in o-, m- and p-bis(carbonylthioureido)benzenes containing bisferrocenes.

Acta Crystallogr C Struct Chem

February 2025

Institute of Applied Chemistry, Shanxi University, Wucheng, Taiyuan, Shanxi 030006, People's Republic of China.

Three bisferrocene-based bis(acylthiourea) positional isomers, namely, 1,2-bis(ferrocenylcarbonylthioureido)benzene (1), 1,3-bis(ferrocenylcarbonylthioureido)benzene (2) and 1,4-bis(ferrocenylcarbonylthioureido)benzene (3), all [Fe(CH)(CHNOS)], have been synthesized via facile nucleophilic addition reactions of 2.3 equivalents of ferrocenoyl isothiocyanate with o-, m- and p-phenylenediamine, respectively. The structures of the three new synthesized isomers were fully characterized by H NMR, C NMR, IR and UV-Vis spectroscopy, elemental analyses and cyclic voltammetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!