We investigated protein expression in the medullary visceral zone (MVZ) of rats with multiple-organ dysfunction syndrome (MODS) caused by subarachnoid hemorrhage (SAH) to discuss the possible regulatory mechanism of the MVZ in the course of SAH-induced MODS. A SAH-induced MODS model was established in rats by injecting arterial blood into the Willis' circle. Protein expression in the MVZ was analyzed by immunohistochemistry assay. Protein expression in the MVZ peaked 24-36 h after SAH, and was significantly higher than in the control and sham operation groups. Organs at each time point exhibited inflammatory injuries to varying degrees after SAH, which reached a maximum at 24-36 h. Incidences of systemic inflammatory response syndrome and MODS were 100 and 71.67%, respectively, after SAH. There is a consistency between MVZ protein expression and inflammatory changes in each organ after SAH. This prompts the suggestion that the MVZ may be one of the direct regulative centers in SAH-induced MODS, and may be involved in the functional regulation of the surrounding organs after SAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4238/2015.August.3.7 | DOI Listing |
J Reprod Immunol
January 2025
Department of Chinese Medicine Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China. Electronic address:
Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.
Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
January 2025
Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan.
Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!