Mutations in isocitrate dehydrogenase (IDH) 1 and 2 are frequently observed in acute myeloid leukemia (AML), glioma, and many other cancers. While wild-type IDHs mediate exchanges between isocitrate and α-ketoglutarate (α-KG), mutant IDHs convert α-KG to oncometabolite 2-hydroxyglutarate (2-HG), which causes dysregulation of a set of α-KG-dependent dioxygenases such as TET, histone demethylase and others. Because mutant IDH has no necessary functions in normal cells, inhibitors directed against mutant IDH are not expected to have the side effects as anti-cancer agents. To determine whether mutant IDH enzymes are valid targets for cancer therapy, we created a mouse model of mutant IDH2-dependent AML. By using a combination of AML model mice with cre-loxp, we conditionally deleted mutant IDH2 from AML mice, which resulted in the loss of leukemia stem cells and significantly delayed the progression of AML. These results indicate that mutant IDHs are promising targets for anticancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.11406/rinketsu.56.1045DOI Listing

Publication Analysis

Top Keywords

mutant idh
12
acute myeloid
8
myeloid leukemia
8
mutant idhs
8
mutant
7
aml
5
[idh mutations
4
mutations activate
4
activate hoxa9/meis1
4
hoxa9/meis1 hypoxia
4

Similar Publications

Background: Temozolomide (TMZ) treatment has demonstrated, but variable, impact on glioma prognosis. This study examines associations of survival with DNA repair gene germline polymorphisms among glioma patients who did and did not have TMZ treatment. Identifying genetic markers which sensitize tumor cells to TMZ could personalize therapy and improve outcomes.

View Article and Find Full Text PDF

Glioblastoma IDH wild type (GBM IDH wt) has a poor prognosis and a strongly associated with inflammatory processes. Inflammatory molecules generate positive feedback with tumor cells fueling tumor growth as well as recruitment of immune cells that promote aggressiveness. Although the role of many inflammatory molecules is well known, there are many macromolecules, such as the S100A proteins, whose role is only now beginning to be established.

View Article and Find Full Text PDF

The phase-3 INDIGO trial demonstrated that the isocitrate dehydrogenase () inhibitor vorasidenib significantly prolonged progression-free survival and delayed intervention in patients with CNS WHO grade 2 gliomas. However, conventional MRI showed limited response, with only 11% of patients having objective responses. Studies suggest that serial PET imaging with radiolabeled amino acids, such as -(2-[ F]-fluoroethyl)-L-tyrosine (FET) PET, may provide earlier and more informative assessments of treatment response than MRI.

View Article and Find Full Text PDF

Isocitrate dehydrogenase (IDH)-mutant gliomas are the most common malignant primary brain tumors in young adults. This condition imposes a substantial burden on patients and their caregivers, marked by neurocognitive deficits and high mortality rates due to tumor progression, coupled with significant morbidity from current treatment modalities. Although surgery, radiation therapy, and chemotherapy improve survival, these treatments can adversely affect cognitive function, quality of life, finances, employment status, and overall independence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!