Mechanism-based design of labile precursors for chromium(I) chemistry.

Chem Commun (Camb)

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.

Published: October 2015

Dinitrogen complexes of the type Tp(R,R)Cr-N2-CrTp(R,R) are not the most labile precursors for Cr(i) chemistry, as they are sterically protected from obligatory associative ligand substitution. A mononuclear alkyne complex - Tp(tBu,Me)Cr(η(2)-C2(SiMe3)2) - proved to be much more reactive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893307PMC
http://dx.doi.org/10.1039/c5cc05993cDOI Listing

Publication Analysis

Top Keywords

labile precursors
8
mechanism-based design
4
design labile
4
precursors chromiumi
4
chromiumi chemistry
4
chemistry dinitrogen
4
dinitrogen complexes
4
complexes type
4
type tprrcr-n2-crtprr
4
tprrcr-n2-crtprr labile
4

Similar Publications

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

A homoleptic rare-earth-metal tetramethylindate.

Chem Commun (Camb)

January 2025

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.

Article Synopsis
  • La(InMe) is a new homoleptic complex formed from La(AlMe) using a donor-assisted exchange method involving tetramethylaluminate and tetramethylindate.
  • La(InMe) shows interesting thermal sensitivity and can form distinct clusters when excess donors are added or when heated.
  • The ligand MeTACN is employed to explore the intermediates triggered by donors, making La(InMe) a unique precursor for further chemical reactions, unlike La(AlMe) and La(GaMe).
View Article and Find Full Text PDF

Unveiling the Phosphine-Mediated -Transfer from Azide to Isocyanide en Route to Carbodiimides and 4-Imino-1,3,2-diazaphosphetidines.

Org Lett

January 2025

Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain.

Intramolecular reactions between isocyano and iminophosphorane functions yield species containing an embedded 1,3,2-diazaphosphetidine ring, as result of the [2 + 2] cycloaddition of the primary reactive product, the cyclic carbodiimide, with a second unit of reactant. DFT studies reveal a first rate-determining step entailing a [2 + 1] cycloaddition involving the isocyanide carbon atom and the P═N double bond, with the further intervention of a dipolar precursor of the intermediate carbodiimide. The 1,3,2-diazaphosphetidine ring of the final products is shown to be hydrolytically and thermally labile.

View Article and Find Full Text PDF

Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments.

View Article and Find Full Text PDF

Peroxynitrite (ONOO) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO concentrations to protect cellular components. While the interaction of ONOO with heme proteins is well known, the reduction by Cu-containing proteins is less studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!