Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

J Biosci Bioeng

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:

Published: April 2016

The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2015.08.006DOI Listing

Publication Analysis

Top Keywords

ethanol tolerance
24
ethanol
12
metabolomic approach
8
improving ethanol
8
ethanol stress
8
saccharomyces cerevisiae
8
yeast cells
8
tolerance study
8
valine inositol
8
tolerance
7

Similar Publications

Enhanced butanol tolerance and production from puerariae slag hydrolysate by Clostridium beijerinckii through metabolic engineering and process regulation strategies.

Bioresour Technol

January 2025

College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:

Butanol is a more desirable second-generation biomass energy source. Acetone-butanol-ethanol (ABE) fermentation using Clostridium spp. is a promising method for butanol production.

View Article and Find Full Text PDF

Global warming is seriously threatening sheep farmings by increasing health problems and decreasing reproductive efficiency. In this study, pomegranate peels ethanolic extract (Ppee), rich in phenolic acids, was prepared in free (Fppee) and nanoemulsified (Nppee, with 18.49 nm-21.

View Article and Find Full Text PDF

, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of (TME) along with its ethyl acetate (TME-EA) and water (TME-A) fractions. TME (10-200 µg/mL), TME-EA (1-15 µg/mL), and TME-A (100-1000 µg/mL) were prepared and applied to B16F10 cells with or without α-MSH for 72 h.

View Article and Find Full Text PDF

β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.

View Article and Find Full Text PDF

Analgesic Effect of Oxytocin in Alcohol-Dependent Male and Female Rats.

Alcohol

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:

Introduction: Chronic alcohol exposure in humans and rodents causes tolerance to the analgesic effects of alcohol, and enhances pain sensitivity during alcohol withdrawal (i.e., hyperalgesia).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!