Foxl2 and cyp19a1a genes are crucial for the ovarian development, and Foxl2 could play a direct regulatory role on cyp19a1a transcription. In this study, we aimed to study DNA methylation status and mRNA expression patterns of Foxl2 and cyp19a1a genes during ovarian development of female Japanese flounder. The relative expression level of cyp19a1a and Foxl2 gene during the gonadal development stages was measured by quantitative PCR. Moreover, DNA methylation status in the promoter and coding regions of the two genes was detected by bisulfite sequencing. The estradiol-17β (E2) was measured by radioimmunoassay. The results showed low expression levels of cyp19a1a and Foxl2 genes in stages II and V, while the highest expression levels were detected in stage IV. The variation trend of the methylation level of all CpG sites in promoter and exon 1 of cyp19a1a gene and three CpG rich regions in coding region of Foxl2 gene was negatively associated with their expression levels during the ovarian development. In addition, two CpG sites in promoter and seven CpG sites in exon 1 of cyp19a1a were on the putative transcription factors binding sequence. Further studies showed that the forkhead domain, which is important for Foxl2 binding to cyp19a1a was located in the F1 and F2 region. These results provide a powerful theoretical basis for the regulatory mechanism on Foxl2 regulating cyp19a1a and promoting gonadal differentiation towards the female pathway, and further reveal that Foxl2 and cyp19a1a play a vital role in the female Japanese flounder gonad development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2015.09.006 | DOI Listing |
Nat Cancer
January 2025
Dept. of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.
The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.
View Article and Find Full Text PDFGut
January 2025
Barts Cancer Institute, Queen Mary University of London, London, UK
Background: The risk of developing advanced neoplasia (AN; colorectal cancer and/or high-grade dysplasia) in ulcerative colitis (UC) patients with a low-grade dysplasia (LGD) lesion is variable and difficult to predict. This is a major challenge for effective clinical management.
Objective: We aimed to provide accurate AN risk stratification in UC patients with LGD.
Anal Chim Acta
March 2025
Department of Obstetrics and Gynecology the Second Affiliated Hospital of Nanchang University, China. Electronic address:
Rapid, sensitive, and specific molecular detection methods are crucial for diagnosing, treating and prognosing cancer patients. With advancements in biotechnology, molecular diagnostic technology has garnered significant attention as a fast and accurate method for cancer diagnosis. CRISPR-Cas12a (Cpf1), an important CRISPR-Cas family member, has revolutionized the field of molecular diagnosis since its introduction.
View Article and Find Full Text PDFGene
January 2025
Hangzhou Women's Hospital, Hangzhou, Zhejiang, China. Electronic address:
Pelvic floor disorder (PFD) is a common gynecological disorder, and with the ageing of the population, PFD has a serious impact on the physical and mental health of patients and their quality of life. The most prominent of these are pelvic organ prolapse (POP) and urinary incontinence (UI), about which the etiology is still unclear, and it is urgent to explore their pathogenesis. Advances in genetics and epigenetics have provided new insights into the pathophysiology of PFD.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China. Electronic address:
Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!