The nonstructural protein 11 of porcine reproductive and respiratory syndrome virus inhibits NF-κB signaling by means of its deubiquitinating activity.

Mol Immunol

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China. Electronic address:

Published: December 2015

Since its emergence in the late 1980s, porcine reproductive and respiratory syndrome (PRRS) has been devastating the swine industry worldwide. The causative agent is an Arterivirus, referred to as PRRS virus (PRRSV). The pathogenic mechanisms of PRRS are poorly understood, but are believed to correlate with the ability of PRRSV to inhibit immune responses of the host. However, precisely how the virus is capable of doing so remains obscure. In this study, we showed that PRRSV infection led to reduced ubiquitination of cellular proteins. Screening all of the 12 nonstructural proteins (Nsps) encoded by PRRSV revealed that, apart from the Nsp2 which contains the deubiqintinating (DUB) ovarian tumor (OTU) domain, Nsp11, which encodes a unique and conserved endoribonuclease (NendoU) throughout the Nidovirus order, also possesses DUB activity. In vivo assay demonstrated that Nsp11 specifically removed lysine 48 (K48)-linked polyubiquitin chains and the conserved sites C112, H144, D173, K180, and Y219 were critical for its DUB activity. Remarkably, DUB activity was responsible for the capacity of Nsp11 to inhibit nuclear factor κB (NF-κB) activation. Mutations abrogating the DUB activity of Nsp11 toward K48-linked polyubiquitin chains of IκBα nullified the suppressive effect on NF-κB. Our data add Nsp11 to the list of DUBs encoded by PRRSV and uncover a novel mechanism by which PRRSV cripples host innate immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112538PMC
http://dx.doi.org/10.1016/j.molimm.2015.08.011DOI Listing

Publication Analysis

Top Keywords

dub activity
16
porcine reproductive
8
reproductive respiratory
8
respiratory syndrome
8
immune responses
8
encoded prrsv
8
k48-linked polyubiquitin
8
polyubiquitin chains
8
prrsv
6
activity
5

Similar Publications

Dysregulation of deubiquitinylases: a linchpin of gastrointestinal diseases.

Trends Mol Med

January 2025

Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany. Electronic address:

Ubiquitinylation of proteins regulates manifold processes and is reversed by deubiquitinylating enzymes (DUBs), which are therefore implicated in a plethora of cellular processes. DUBs are frequently upregulated in many diseases, while in a few cases downregulation of DUBs is associated with disease progression. This review focuses on the involvement of DUBs in the development and progression of gastrointestinal diseases with a particular emphasis on hepatic steatosis and hepatocellular, cholangio-, esophageal, gastric, colorectal, and pancreatic ductal carcinomas.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

As a crucial post-translational modification (PTM), protein ubiquitination mediates the breakdown of particular proteins, which plays a pivotal role in a large number of biological processes including plant growth, development, and stress response. The ubiquitin-proteasome system (UPS) consists of ubiquitin (Ub), ubiquitinase, deubiquitinating enzyme (DUB), and 26S proteasome mediates more than 80% of protein degradation for protein turnover in plants. For the ubiquitinases, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), the FBK (F-box Kelch repeat protein) is an essential component of multi-subunit E3 ligase SCF (Skp1-Cullin 1-F-box) involved in the specific recognition of target proteins in the UPS.

View Article and Find Full Text PDF

Chemical tools to define and manipulate interferon-inducible Ubl protease USP18.

Nat Commun

January 2025

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.

Ubiquitin-specific protease 18 (USP18) is a multifunctional cysteine protease primarily responsible for deconjugating the interferon-inducible ubiquitin-like modifier ISG15 from protein substrates. Here, we report the design and synthesis of activity-based probes (ABPs) that incorporate unnatural amino acids into the C-terminal tail of ISG15, enabling the selective detection of USP18 activity over other ISG15 cross-reactive deubiquitinases (DUBs) such as USP5 and USP14. Combined with a ubiquitin-based DUB ABP, the USP18 ABP is employed in a chemoproteomics screening platform to identify and assess inhibitors of DUBs including USP18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!