A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of 6-phenylimidazo[2,1-b]thiazole derivatives as a new type of FLT3 inhibitors. | LitMetric

Discovery of 6-phenylimidazo[2,1-b]thiazole derivatives as a new type of FLT3 inhibitors.

Bioorg Med Chem Lett

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan 610041, China. Electronic address:

Published: October 2015

In this investigation, a series of 6-phenylimidazo[2,1-b]thiazole derivatives were synthesized. Structure-activity relationship (SAR) analysis of these compounds based on cellular assays led to the discovery of a number of compounds that showed potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell line MV4-11, but very weak or no activity against FLT3-independent human cervical cancer cell line Hela. FLT3 kinase inhibition assays were then performed on the three most active compounds. Among these compounds, 6-(4-(3-(5-(tert-butyl)isoxazol- 3-yl)ureido)phenyl)-N-(3-(dimethylamino)propyl)imidazo[2,1-b]thiazole-3-carboxamide (19) exhibited the highest potency in both cellular (MV4-11, IC50: 0.002 μM) and enzymatic (FLT3, IC50: 0.022 μM) assays. Further in-depth in vitro anti-AML activity and mechanism of action studies were carried out on compound 19.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2015.08.068DOI Listing

Publication Analysis

Top Keywords

6-phenylimidazo[21-b]thiazole derivatives
8
discovery 6-phenylimidazo[21-b]thiazole
4
derivatives type
4
type flt3
4
flt3 inhibitors
4
inhibitors investigation
4
investigation series
4
series 6-phenylimidazo[21-b]thiazole
4
derivatives synthesized
4
synthesized structure-activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!