Role of connexin 43 in vascular hyperpermeability and relationship to Rock1-MLC20 pathway in septic rats.

Am J Physiol Lung Cell Mol Physiol

State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China

Published: December 2015

Connexin (Cx)43 has been shown to participate in several cardiovascular diseases. Increased vascular permeability is a common and severe complication in sepsis or septic shock. Whether or not Cx43 takes part in the regulation of vascular permeability in severe sepsis is not known, and the underlying mechanism has not been described. With cecal ligation and puncture-induced sepsis in rats and lipopolysaccharide (LPS)-treated vascular endothelial cells (VECs) from pulmonary veins, the role of Cx43 in increased vascular permeability and its relationship to the RhoA/Rock1 pathway were studied. It was shown that vascular permeability in the lungs, kidneys, and mesentery in sepsis rats and LPS-stimulated monolayer pulmonary vein VECs was significantly increased and positively correlated with the increased expression of Cx43 and Rock1 in these organs and cultured pulmonary vein VECs. The connexin inhibitor carbenoxolone (10 mg/kg iv) and the Rock1 inhibitor Y-27632 (2 mg/kg iv) alleviated the vascular leakage of lung, mesentery, and kidney in sepsis rats. Overexpressed Cx43 increased the phosphorylation of 20-kDa myosin light chain (MLC20) and the expression of Rock1 and increased the vascular permeability and decreased the transendothelial electrical resistance of pulmonary vein VECs. Cx43 RNA interference decreased the phosphorylation of MLC20 and the expression of Rock1 and decreased LPS-stimulated hyperpermeability of cultured pulmonary vein VECs. The Rock1 inhibitor Y-27632 alleviated LPS- and overexpressed Cx43-induced hyperpermeability of monolayer pulmonary vein VECs. This report shows that Cx43 participates in the regulation of vascular permeability in sepsis and that the mechanism is related to the Rock1-MLC20 phosphorylation pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00016.2015DOI Listing

Publication Analysis

Top Keywords

vascular permeability
24
pulmonary vein
20
vein vecs
20
increased vascular
12
sepsis rats
12
vascular
9
regulation vascular
8
cx43 increased
8
monolayer pulmonary
8
cultured pulmonary
8

Similar Publications

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) dysfunction is suggested to be a potential mediator between vascular risk factors and cognitive impairment, leading to vascular cognitive impairment. To investigate the relationships between age, sex, and vascular risk factors and BBB water permeability as well as their relationship with cognition. To measure BBB permeability, a novel arterial spin labelling MRI technique (ME-ASL) was applied to derive the time of exchange (Tex), arterial time transit (ATT), and cerebral blood flow (CBF).

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.

View Article and Find Full Text PDF

The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!