The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646252PMC
http://dx.doi.org/10.1074/jbc.M115.675082DOI Listing

Publication Analysis

Top Keywords

dntp pool
12
samhd1
10
activity samhd1
8
mitochondrial dna
8
dna depletion
8
deoxyguanosine kinase
8
dntp pools
8
inside mitochondria
8
purine nucleoside
8
nucleoside phosphorylase
8

Similar Publications

Disruption of deoxyribonucleotide triphosphate biosynthesis leads to RAS proto-oncogene activation and perturbation of mitochondrial metabolism.

J Biol Chem

December 2024

Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France. Electronic address:

Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG->TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogen's long-term success is linked to its ability to survive within macrophages and limited response to antibiotics, raising concerns about drug resistance.
  • Despite high drug resistance rates, the low mutation rates of mycobacteria suggest that new resistant strains primarily arise from non-genetic adaptations rather than genetic mutations.
  • Research showed that while antibiotic exposure does not increase mutation rates, it does lead to rapid adaptation through non-genetic mechanisms and the activation of DNA repair pathways.
View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC), a malignancy of the digestive system, is highly prevalent and the primary cause of cancer-related deaths worldwide due to the lack of early diagnostic biomarkers and effective therapeutic targets. Dysregulated ribonucleotide reductase (RNR) expression has been confirmed to be causally linked to tumorigenesis. This study demonstrated that ribonucleotide reductase small subunit M2 (RRM2) is significantly upregulated in ESCC tissue and that its expression is negatively correlated with clinical outcomes.

View Article and Find Full Text PDF

Altered dNTP pools accelerate tumor formation in mice.

Nucleic Acids Res

November 2024

Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden.

Article Synopsis
  • Changes in deoxyribonucleoside triphosphate (dNTP) pools are tied to higher mutation rates and genome instability in unicellular organisms, but their role in mammalian tumor development is not well understood.
  • A mouse model with a specific mutation in ribonucleotide reductase (RRM1-Y285A) showed decreased enzyme activity, leading to reduced dATP and dGTP levels, resulting in shorter lifespans and earlier tumor onset.
  • Analysis of the tumors indicated unique mutational signatures similar to those found in human cancers with related mutations in ribonucleotide reductase, suggesting that dNTP metabolism mutations may drive cancer development.
View Article and Find Full Text PDF

Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism.

Viruses

September 2024

Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.

Article Synopsis
  • dNTPs are super important for making sure DNA gets copied and stays healthy in cells.
  • Different enzymes like DHFR, RNR, and SAMHD1 help manage the amounts of dNTPs in the cell to make sure everything runs smoothly.
  • The balance of dNTPs can even affect how viruses interact with our cells and the genes that help break down these building blocks.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!