The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human-machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each high-level spinal cord injury (SCI) survivor, we can make modifications to restore a higher level of symmetric mobility (left versus right), or to increase the strength and range of motion of the upper body that was spared by the injury. Results showed that this approach restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom in the participants involved in the control of the interface. This is a proof of concept that our BoMI may be used concurrently to control assistive devices and reach specific rehabilitative goals. Engaging the users in functional and entertaining tasks while practicing the interface and changing the map in the proposed ways is a novel approach to rehabilitation treatments facilitated by portable and low-cost technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679682PMC
http://dx.doi.org/10.1016/j.neuropsychologia.2015.08.024DOI Listing

Publication Analysis

Top Keywords

degrees freedom
12
motor
9
assistive devices
8
motor system
8
control external
8
motor skills
8
rehabilitative goals
8
upper body
8
users functional
8
control
5

Similar Publications

In recent years, robotic assistance has become increasingly used and applied in minimally invasive surgeries. A new cooperative surgical robot system that includes a joystick-guided robotic scope holder was developed in this study, and its feasibility for use in minimally invasive abdominal surgery was evaluated in a preclinical setting. The cooperative surgical robot consists of a six-degree-of-freedom collaborative robot arm and a one-degree-of-freedom bidirectional telescopic end-effector specializing in surgical assistance.

View Article and Find Full Text PDF

Background: Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI.

Methods: A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection.

View Article and Find Full Text PDF

Parallel layered scheme-based integrated orbit-attitude-vibration coupled dynamics and control for large-scale spacecraft.

ISA Trans

December 2024

National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China. Electronic address:

This paper investigates an integrated model-control scheme for large-scale spacecraft, focusing on orbit-attitude-vibration dynamics subject to strong time-varying coupling characteristics. The proposed scheme aims to achieve cooperative modeling and control for orbit maintenance, attitude stabilization and vibration suppression simultaneously. An integrated dynamic model is established using the Absolute Nodal Coordinate Formulation and Lagrangian mechanics, where time-varying coupling terms are preserved to enhance model integrity, contrasting with the reduction and decoupling methods commonly adopted in existing literature.

View Article and Find Full Text PDF

The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums.

View Article and Find Full Text PDF

Chemical modulation and defect engineering in high-performance GeTe-based thermoelectrics.

Chem Sci

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China

Thermoelectric technology plays an important role in developing sustainable clean energy and reducing carbon emissions, offering new opportunities to alleviate current energy and environmental crises. Nowadays, GeTe has emerged as a highly promising thermoelectric candidate for mid-temperature applications, due to its remarkable thermoelectric figure of merit () of 2.7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!