Introduction: This work describes the development and characterization of two antibody fragments that specifically target the α(v)β(6) integrin, a non-covalent diabody and a disulfide-stabilized cys-diabody. The diabodies were analyzed for their ability to bind both immobilized and cell surface-bound α(v)β(6). Radiolabeling was done using non-site-specific and site-specific conjugation approaches with N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]-SFB) and the bifunctional chelator 1,4,7-triazacyclononane-triacetic acid maleimide (NOTA-maleimide) and copper-64 ([(64)Cu]), respectively. The affects of each radiolabeling method on RCY, RCP, and immunoreactivity were analyzed for the [(18)F]-FB-α(v)β(6) diabody, [(18)F]-FB-α(v)β(6) cys-diabody, and the [(64)Cu]-NOTA-α(v)β(6) cys-diabody.
Methods: Diabodies were constructed from the variable domains of the humanized 6.3G9 anti-α(v)β(6) intact antibody. The anti-α(v(β(6) cys-diabody was engineered with C-terminal cysteines to enable covalent dimerization and site-specific modification. Biochemical characterization included SDS-PAGE, Western blot, and electrospray ionization to confirm MW, and flow cytometry and ELISA experiments were used to determine binding affinity and specificity to α(v)β(6). The diabodies were radiolabeled with [(18)F]-SFB and in addition, the anti-α(v)β(6) cys-diabody was also radiolabeled site-specifically using NOTA-maleimide and [(64)Cu]. Immunoreactivities were confirmed using in vitro cell binding to DX3Puroβ(6) (α(v)β(6)+) and DX3Puro (α(v)β(6)-)cell lines.
Results: The diabodies were purified from cell culture supernatants with purities >98%. Subnanomolar binding affinity towards αvβ6 was confirmed by ELISA (diabody IC(50)=0.8 nM, cys-diabody IC(50)=0.6 nM) and flow cytometry revealed high specificity only to the DX3Puroβ(6) cell line for both diabodies. RCYs were 22.6%±3.6% for the [(18)F]-FB-α(v)β(6) diabody, 8.3%±1.7% for the [(18)F]-FB-α(v)β(6) cys-diabody and 43.5%±5.5% for the [(64)Cu]-NOTA-α(v)β(6) cys-diabody. In vitro cell binding assays revealed excellent specificity and retention of immunoreactivity ([(18)F]-FB-α(v)β(6) diabody=58.7%±6.7%, [(18)F]-FB-α(v)β(6) cys-diabody=80.4%±4.4%, [(64)Cu]-NOTA-α(v)β(6) cys-diabody=59.4%±0.6%) regardless of the radiolabeling method used.
Conclusions: Two novel diabodies with excellent binding affinity and specificity for the α(v)β(6) integrin in vitro were developed. Radiolabeling of the diabodies with fluorine-18 ([(18)F]) and [(64)Cu] revealed advantages and disadvantages with regards to methodologies and RCYs, however immunoreactivities were well preserved regardless of radiolabeling approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2015.07.014 | DOI Listing |
Plant Mol Biol
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
Ensuring species integrity and successful reproduction is pivotal for the survival of angiosperms. Members of Brassicaceae family employ a "lock and key" mechanism involving stigmatic (sRALFs) and pollen RALFs (pRALFs) binding to FERONIA, a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) receptor, to establish a prezygotic hybridization barrier. In the absence of compatible pRALFs, sRALFs bind to FERONIA, inducing a lock state for pollen tube penetration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Federal University of Paraná, Curitiba, 81531-980, Brazil.
Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.
is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
Selenium deficiency associated with a high risk of many diseases remains a global challenge. Owing to the narrow margin between "nutrition-toxicity" doses of selenium, it is imperative to achieve accurate selenium supplement. Nano‑selenium (SeNPs) is a novel form of selenium supplement with low toxicity, but it could be trapped and removed by intestinal mucus, thus limiting its oral delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!