A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair.

J Biomater Appl

Clinicum, Institute of Medicine, University of Helsinki, Helsinki, Finland ORTON Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland COXA Hospital for Joint Replacement, Tampere, Finland.

Published: January 2016

AI Article Synopsis

  • The research focused on creating a hybrid tissue engineering construct aimed at promoting chondrogenesis, which is the process of cartilage formation.
  • A biodegradable polycaprolactone scaffold was developed and enhanced with a chitosan/polyethylene oxide nanofibre sheet to support stem cell integration and cartilage development.
  • The design allows for effective cellular aggregation and matrix formation while reducing complications related to cell migration and scarring, facilitating gradual and efficient cartilage regeneration.

Article Abstract

The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328215604069DOI Listing

Publication Analysis

Top Keywords

nanofibre sheet
12
engineering construct
8
chitosan/polyethylene oxide
8
oxide nanofibre
8
tissue engineering
8
mesenchymal stem
8
bioactive hybrid
4
hybrid three-dimensional
4
three-dimensional tissue-engineering
4
construct
4

Similar Publications

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

Optimal Method to Realize Quantitative Detection of 1D and 2D Nanoassemblies Based on AIE-Active Bolaamphiphilic Molecules.

Langmuir

January 2025

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.

Controllable transformation between the bolaamphiphilic molecule assemblies with different morphological nanostructures represents an exciting new direction for materials. However, there are still significant challenges for the quantitative detection and real-time monitoring of a controllable nanoself-assembly process due to insufficient measuring methods. Herein, we propose a new and effective fluorescence technology for realizing quantitative detection of a controllable conversion process of one-dimensional (1D)/two-dimensional (2D) nanoassemblies by introducing AIEgens as the fluorescence signal part.

View Article and Find Full Text PDF

The ability of fungi and bacteria to form biofilms on surfaces poses a serious threat to health and a problem in industrial settings. In this work, we investigated how the surface stiffness of silk fibroin (SF) films is modulated by the interaction with black phosphorus (BP) flakes, quantifying the morphogenesis of cells. Raman and infrared (IR) spectroscopies, along with scanning transmission electron microscopy, allowed us to quantify the thickness and diameter of BP flakes dispersed in the SF matrix (, 5.

View Article and Find Full Text PDF

A novel triphenylamine-based dicyano fluorophore (compound 2) was successfully synthesized using a Suzuki cross-coupling reaction, followed by a Knoevenagel condensation catalyzed with baker's yeast. Later, compound 2 was combined with the hydrazine vapor of an electrospun nanofiber sheet, depending on its solid condition. In addition, the electrospinning technique was used to create a nanofiber sheet made of cellulose acetate (CA) combined with compound 2.

View Article and Find Full Text PDF

Cellular infiltration into electrospun nanofibers (NFs) is limited due to the dense structure and small pore sizes. We developed a programmed NF collector that can fabricate porous NFs with desired pore sizes and thickness. Previously we demonstrated improved cellular proliferation and differentiation of osteoblasts, osteoclasts, and fibroblasts with increased pore sizes of polycaprolactone (PCL) NF in-vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!