Comparison of the pathogenesis of the highly passaged MCMV Smith strain with that of the low passaged MCMV HaNa1 isolate in BALB/c mice upon oronasal inoculation.

Vet Res

Laboratory of Virology, Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Published: September 2015

Murine cytomegalovirus (MCMV) Smith strain is widely used in mouse models to study HCMV infections. Due to high serial passages, MCMV Smith has acquired genetic and biological changes. Therefore, a low passaged strain would be more relevant to develop mouse models. Here, the pathogenesis of an infection with MCMV Smith was compared with that of an infection with a low passaged Belgian MCMV isolate HaNa1 in BALB/c adult mice following oronasal inoculation with either a low (10(4) TCID50/mouse) or high (10(6) TCID50/mouse) inoculation dose. Both strains were mainly replicating in nasal mucosa and submandibular glands for one to two months. In nasal mucosa, MCMV was detected earlier and longer (1-49 days post inoculation (dpi)) and reached higher titers with the high inoculation dose compared to the low inoculation dose (14-35 dpi). In submandibular glands, a similar finding was observed (high dose: 7-49 dpi; low dose: 14-42 dpi). In lungs, both strains showed a restricted replication. In spleen, liver and kidneys, only the Smith strain established a productive infection. The infected cells were identified as olfactory neurons and sustentacular cells in olfactory epithelium, macrophages and dendritic cells in NALT, acinar cells in submandibular glands, and macrophages and epithelial cells in lungs for both strains. Antibody analysis demonstrated for both strains that IgG2a was the main detectable antibody subclass. Overall, our results show that significant phenotypic differences exist between the two strains. MCMV HaNa1 has been shown to be interesting for use in mouse models in order to get better insights for HCMV infections in immunocompetent humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560884PMC
http://dx.doi.org/10.1186/s13567-015-0228-6DOI Listing

Publication Analysis

Top Keywords

mcmv smith
16
smith strain
12
low passaged
12
mouse models
12
inoculation dose
12
submandibular glands
12
mcmv
8
passaged mcmv
8
mcmv hana1
8
mice oronasal
8

Similar Publications

Conventional antiviral memory CD4 T cells typically arise during the first two weeks of acute infection. Unlike most viruses, cytomegalovirus (CMV) exhibits an extended persistent replication phase followed by lifelong latency accompanied with some gene expression. We show that during mouse CMV (MCMV) infection, CD4 T cells recognizing an epitope derived from the viral M09 protein only develop after conventional memory T cells have already peaked and contracted.

View Article and Find Full Text PDF

Murine cytomegalovirus (MCMV), and, in particular, recombinant virus derived from MCMV-bacmid pSM3fr, is widely used as the small animal infection model for human cytomegalovirus (HCMV). We sequenced the complete genomes of MCMV strains and recombinants for quality control. However, we noticed deviances from the deposited reference sequences of MCMV-bacmid pSM3fr.

View Article and Find Full Text PDF

Natural killer (NK) cells have an established role in controlling poxvirus infection and there is a growing interest to exploit their capabilities in the context of poxvirus-based oncolytic therapy and vaccination. How NK cells respond to poxvirus-infected cells to become activated is not well established. To address this knowledge gap, we studied the NK cell response to vaccinia virus (VACV) , using a systemic infection murine model.

View Article and Find Full Text PDF

CMV, a ubiquitous herpesvirus, elicits an extraordinarily large T cell response that is sustained or increases over time, a phenomenon termed 'memory inflation.' Remarkably, even latent, non-productive infection can drive memory inflation. Despite intense research on this phenomenon, the infected cell type(s) involved are unknown.

View Article and Find Full Text PDF

Construction of a mouse model of Posner-Schlossman syndrome by anterior chamber infection with cytomegalovirus.

Exp Eye Res

May 2022

Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Accumulated clinical evidence has shown that Posner-Schlossman syndrome (PSS) is most likely the result of recurrent human cytomegalovirus (HCMV) infection in the anterior chamber (AC). Establishing an animal model is necessary to investigate the pathogenesis of PSS. In this study, we constructed a mouse model of (PSS) by injecting murine cytomegalovirus (MCMV) into the AC of BALB/c mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!