The imaging performance of fluorescence molecular tomography (FMT) improves when information from the underlying anatomy is incorporated into the inversion scheme, in the form of priors. The requirement for incorporation of priors has recently driven the development of hybrid FMT systems coupled to other modalities, such as X-ray CT and MRI. A critical methodological aspect in this modality relates to the particular method selected to incorporate prior information obtained from the anatomical imaging modality into the FMT inversion. We propose herein a new approach for utilizing prior information, which preferentially minimizes residual errors associated with measurements that better describe the anatomical segments considered. This preferential minimization was realized using a weighted least square (WLS) approach, where the weights were optimized using a Mamdani-type fuzzy inference system. The method of priors introduced herein was deployed as a two-step structured regularization approach and was verified with experimental measurements from phantoms as well as ex vivo and in vivo animal studies. The results demonstrate accurate performance and minimization of reconstruction bias, without requiring user input for setting the regularization parameters. As such, the proposed method offers significant progress in incorporation of anatomical priors in FMT and, as a result, in realization of the full potential of hybrid FMT.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2015.2475356DOI Listing

Publication Analysis

Top Keywords

inversion scheme
8
fluorescence molecular
8
molecular tomography
8
fuzzy inference
8
inference system
8
hybrid fmt
8
fmt
5
scheme hybrid
4
hybrid fluorescence
4
tomography fuzzy
4

Similar Publications

The steady state of a water distribution system abides by the laws of mass and energy conservation. Hydraulic solvers, such as the one used by EPANET approach the simulation for a given topology with a Newton-Raphson algorithm. However, iterative approximation involves a matrix inversion which acts as a computational bottleneck and may significantly slow down the process.

View Article and Find Full Text PDF

Measurement of divertor surface heat flux by infra-red thermographic inversion in ST40.

Rev Sci Instrum

January 2025

Plasma Prediction and Simulation Department, Tokamak Energy Ltd., 173 Brook Drive, Milton Park, Abingdon OX14 4SD, United Kingdom.

Diagnostic tools for understanding the edge plasma behavior in fusion devices are essential. The main focus of the present work is to present the infra-red (IR) diagnostics installed on Tokamak Energy's spherical tokamak (ST40) and the IR thermographic inversion tool, Functional Analysis of Heat Flux (FAHF). FAHF is designed for multi-2D thermographic inversions within the divertor tiles using the finite difference method and an explicit time stepping scheme.

View Article and Find Full Text PDF

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

Estimation of the spatial variability of the New England Mud Patch geoacoustic properties using a distributed array of hydrophones and deep learninga).

J Acoust Soc Am

December 2024

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones.

View Article and Find Full Text PDF

Continuum-Particle Coupling for Polymer Simulations.

J Chem Theory Comput

January 2025

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technical University of Darmstadt, Peter-Grünberg-Str. 8, Darmstadt D-64287, Germany.

We report a concurrent hybrid multiscale simulation method, in which a particle domain is coupled with a surrounding continuum domain. The particle domain consists of a coarse-grained model of poly(lactic acid) and the continuum domain is treated using the finite element method. The coarse-grained model is derived from an atomistic model, using the iterative Boltzmann inversion scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!