Fern phytochrome3/neochrome1 (phy3/neo1) is a chimeric photoreceptor composed of a phytochrome-chromophore binding domain and an almost full-length phototropin. phy3 thus contains two different light-sensing modules; a red/far-red light receptor phytochrome and a blue light receptor phototropin. phy3 induces both red light- and blue light-dependent phototropism in phototropin-deficient Arabidopsis thaliana (phot1 phot2) seedlings. The red-light response is dependent on the phytochrome module of phy3, and the blue-light response is dependent on the phototropin module. We recently showed that both the phototropin-sensing module and the phytochrome-sensing module mediate the blue light-dependent phototropic response. Particularly under low-light conditions, these two light-sensing modules cooperate to induce the blue light-dependent phototropic response. This intramolecular co-action of two independent light-sensing modules in phy3 enhances light sensitivity, and perhaps allowed ferns to adapt to the low-light canopy conditions present in angiosperm forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883953 | PMC |
http://dx.doi.org/10.1080/15592324.2015.1086857 | DOI Listing |
Structure
November 2024
Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden. Electronic address:
Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein.
View Article and Find Full Text PDFACS Nano
August 2024
Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
Quantum dots (QDs) exhibit size-tunable optical properties, making them suitable for efficient light-sensing and light-emitting devices. Tandem devices that can convert near-infrared (NIR) to visible (Vis) signals can be fabricated by integrating an NIR-sensing QD device with a Vis electroluminescence (EL) QD device. However, these devices require delicate control of the QD layer during processing to prevent damage to the predeposited QD layers in tandem devices during the subsequent deposition of other functional layers.
View Article and Find Full Text PDFAnnu Rev Plant Biol
July 2024
Institute of Biochemistry, Graz University of Technology, Graz, Austria; email:
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses.
View Article and Find Full Text PDFStructure
September 2023
University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland. Electronic address:
In red-light sensing phytochromes, isomerization of the bilin chromophore triggers structural and dynamic changes across multiple domains, ultimately leading to control of the output module (OPM) activity. In between, a hairpin structure, "arm", extends from an interconnecting domain to the chromophore region. Here, by removing this protein segment in a bacteriophytochrome from Deinococcus radiodurans (DrBphP), we show that the arm is crucial for signal transduction.
View Article and Find Full Text PDFCombining digital information science with metasurface technology is critical for achieving arbitrary electromagnetic wave manipulation. However, there is a scarcity of contemporary scholarly studies on this subject. In this paper, we propose an Ultraviolet (UV) sensing metasurface for programmable electromagnetic scattering field manipulation by combining light control with a microwave field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!