Nitrogen signaling and use efficiency in plants: what's new?

Curr Opin Plant Biol

The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China. Electronic address:

Published: October 2015

Crop productivity is heavily dependent on the application of nitrogen (N) fertilizers. Increasing N fertilization levels, however, are subject to diminishing returns, quite apart from their deleterious impact on the environment. Improving N use efficiency (NUE) is therefore crucial for development of sustainable agriculture. Plant NUE is a complex trait determined by quantitative trait loci and influenced by environmental changes. The natural supply of soil N varies and is frequently limiting for plant growth and crop yield: unraveling the molecular basis of how plants sense and respond to changes in N availability should enable the development of new strategies to increase NUE. This review discusses the latest advances in our understanding of N signaling and crosstalk with other signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbi.2015.08.002DOI Listing

Publication Analysis

Top Keywords

nitrogen signaling
4
signaling efficiency
4
efficiency plants
4
plants what's
4
what's new?
4
new? crop
4
crop productivity
4
productivity heavily
4
heavily dependent
4
dependent application
4

Similar Publications

While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (CHO) is used as a BB proxy to investigate these effects.

View Article and Find Full Text PDF

Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, it was shown that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca mobilization, microtubule polymerization, and degranulation.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture.

Plant Signal Behav

December 2025

Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.

The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.

View Article and Find Full Text PDF

Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally.

Plant Divers

November 2024

Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Leaf nitrogen (N) and phosphorus (P) levels provide critical strategies for plant adaptions to changing environments. However, it is unclear whether leaf N and P levels of different plant functional groups (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!