Bimetallic nanoparticles display unique optical and catalytic properties that depend on crystallite size and shape, composition, and overall architecture. They may serve as multifunctional platforms as well. Unfortunately, many routes toward shape and architecturally controlled bimetallic nanocrystals yield polydisperse samples on account of the challenges associated with homogeneously nucleating a defined bimetallic phase by co-reduction methods. Developed by the Skrabalak laboratory, seed-mediated co-reduction (SMCR) involves the simultaneous co-reduction of two metal precursors to deposit metal onto shape-controlled metal nanocrystalline seeds. The central premise is that seeds will serve as preferential and structurally defined platforms for bimetallic deposition, where the shape of the seeds can be transferred to the shells. With Au-Pd as a model system, a set of design principles has been established for the bottom-up synthesis of shape-controlled bimetallic nanocrystals by SMCR. This strategy is successful at synthesizing symmetrically stellated Au-Pd nanocrystals with a variety of symmetries and core@shell Au@Au-Pd nanocrystals. Achieving nanocrystals with high morphological control via SMCR is governed by the following parameters: seed size, shape, and composition as well as the kinetics of seeded growth (through manipulation of synthetic parameters such as pH and metal precursor ratios). For example, larger seeds yield larger nanocrystals as does increasing the amount of metal deposited relative to the number of seeds. This increase in nanocrystal size leads to red-shifts in their localized surface plasmon resonance. Additionally, seed shape directs the overgrowth process during SMCR so the resultant nanocrystals adopt related symmetries. The ability to tune structure is important due to the size-, shape- and composition-dependent optical properties of bimetallic nanocrystals. Using this toolkit, the light scattering and absorption properties of Au-Pd octopods, 8-branched nanocrystals, could be tuned and were shown to be highly sensitive to changes in refractive index. The refractive index sensitivity displayed a linear correlation to the localized surface plasmon resonance initial position, where the sensitivity is greater than that of monometallic Au structures. Due to their bimetallic composition and unique architecture enabled by SMCR, Au-Pd octopods are promising refractive index based sensors. This Account summarizes the underlying principles for synthesis of bimetallic nanocrystals by SMCR, which have been established by systematic manipulation of synthetic parameters in a model Au-Pd system. These principles are anticipated to be general to other bimetallic systems, allowing for the design and synthesis of new nanocrystals with fascinating optical and catalytic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.5b00300 | DOI Listing |
The current investigation focuses on synthesizing Ag-Fe bimetallic nanoparticles (AgFe-BMNPs) using cell-free filtrates of the as a novel fungal reducing agent. The optical, morphological, and surface properties of these fungus-fabricated AgFe-BMNPs and their monometallic counterparts (AgNPs and FeNPs) were analyzed using sophisticated nanotechnology instruments. The UV-visible spectrum showed peaks at 231 nm and 415 nm for BMNPs and 450 nm and 386 nm for AgNPs and FeNPs, respectively.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University 071002 Baoding, PR China. Electronic address:
In this study, a Co doped polyhedral carbon skeleton (Co CN) was prepared by nitrogen carbonization using ZIF-67 as a precursor. The Co CN features a rough surface with excellent electrical conductivity, and the Co atoms exhibit unique catalytic properties. Based on these characteristics, we used Co CN as a carrier to load Au nanoparticles (NPs) onto its surface through the linkage and reduction effects of polyoxometalates (POMs).
View Article and Find Full Text PDFTheranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!