Light is a highly advantageous means of specific cell targeting. Though targeted gene delivery is an important characteristic of an ideal delivery vehicle, there has been little effort to develop a photoresponsive vector. Among nonviral vectors, cationic substances interact effectively with negatively charged DNA. With this property in mind, we designed copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG) with different molecular weights. Though PVAMG has no affinity for DNA in the absence of light, it undergoes photoionization in the presence of light to afford cationic DNA binding sites. The DNA-PVAMG complex was investigated with respect to DNA conformational changes and its protective nature, which are important properties for nonviral vectors. PVAMG irradiation promoted DNA conformational transitions from coils to partial globules to compacted globules. The complex had a protective effect against DNase I after PVAMG irradiation, while DNA was degraded under dark conditions. The effect on DNA transition and the protective nature were sensitive to the molecular weight of PVAMG. The data regarding binding constants and binding mode provided insight into the structure of the DNA-PVAMG complex. To withstand DNase I attacks, complexation results in the compaction of DNA, which is further covered with PVAMG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5sm01874a | DOI Listing |
Int J Radiat Biol
January 2025
Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada.
Background: Recent advancements in omics and benchmark dose (BMD) modeling have facilitated identifying the dose required for a predetermined change in a response (e.g. gene or protein change) that can be used to establish acceptable dose levels for hazardous exposures.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.
Purpose: Ionizing radiation (IR) could induce damage such as DNA damage and oxidative stress. Natural products, like tea, have been demonstrated potential in mitigating these damages. However, the lack of efficient and rapid screening methods for natural products hinders their widespread application.
View Article and Find Full Text PDFChembiochem
January 2025
Universidade Federal de São Carlos: Universidade Federal de Sao Carlos, Departament of Chemistry, 13565-905, São Carlos, BRAZIL.
In this work, we studied six Ruthenium(II)-diphosphine compounds containing different mercapto ligands (N-S), with general formula [Ru(N-S)(dppm)2]Cl (dppm = 1,1-bis(diphenylphosphino)methane). These compounds were characterized by several techniques (NMR [1H, 31P(1H), and 13C], HRMS, IR, UV-Vis and XRD) and their purity confirmed by elemental analysis. DLS experiments revealed low diameters and polydispersity indexes, and positive log P values in n-octanol/PBS indicated their preference for the organic phase.
View Article and Find Full Text PDFPLoS Genet
January 2025
Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
Recently we characterized polymyositis in the Dutch Kooiker dog. The familial occurrence of the disease were suggestive of an inherited cause. Here we report the results of our molecular genetic investigation.
View Article and Find Full Text PDFPLoS One
January 2025
National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.
Background: The emergence of drug-resistant Tuberculosis (TB) has made treatment challenging. Although fluoroquinolones (FQs) are used as key drugs in the treatment of multidrug-resistant tuberculosis (MDR-TB), the problem of FQs resistance is becoming increasingly serious. Rifampicin (RIF) resistance is considered a risk factor for FQs resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!