Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA) biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ(6)-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ(5)-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES) under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3) and docosatetraenoic acid (22:4 n-6) as well as eicosapentaenoic acid (20:5 n-3) and arachidonic acid (20:4 n-6) in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3) could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538586 | PMC |
http://dx.doi.org/10.1155/2015/768478 | DOI Listing |
Eur J Clin Invest
January 2025
Buchinger Wilhelmi Clinic, Überlingen, Germany.
Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Geography and Environmental Studies, College of Natural and Applied Sciences, Sokoine University of Agriculture, P. O. Box 3038, Morogoro, Tanzania.
This study assessed the annual fish consumption among the households in Singida Municipality. This was due to the long-time of unsatisfactory pupil performance in joining secondary schools which may be linked to a lack of Long-chain omega-3 polyunsaturated fatty acids. The study used a questionnaire based on a random household consumer survey of 204 households.
View Article and Find Full Text PDFNutr Neurosci
January 2025
School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
Objectives: Increasing research has shown that heavy metal as a neurotoxicant affects cognitive function across the lifespan. Nutritional status may modify susceptibility to heavy metal exposures, which further impacts cognition.
Methods: We conducted a comprehensive search for cross-sectional studies, longitudinal studies, case-control studies and clinical trials on the interaction between nutrient and heavy metal, as well as mixed heavy metal exposure, in relation to cognition across the lifespan.
Sci Total Environ
January 2025
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:
Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.
View Article and Find Full Text PDFSci Rep
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!