The aim of this study was to construct an RNA-interference plasmid (p-HIF-1α RNAi) targeting the human HIF-1α gene and assess its effects on HIF-1α expression and its anti-tumour functions in vitro. p-HIF-1α RNAi was constructed and confirmed by polymerase chain reaction (PCR) and DNA sequencing. Reverse transcriptase PCR (RT-PCR) and western blot were performed to detect HIF-1α expression in HCT116 cells following transfection of p-HIF-1α RNAi and p-control. The anti-tumour effects and mechanism of action of p-HIF-1α RNAi in HCT116 cells were further investigated. p-HIF-1α RNAi significantly inhibited HIF-1α expression in the HCT116 cell line. p-HIF-1α RNAi inhibited cell viability and reduced VEGF but not bFGF expression in the supernatant of HCT116 cells, down-regulated b-catenin and VEGF expression, and altered β-catenin location in the HCT116 cell nucleus. The plasmid p-HIF-1α RNAi can effectively and specifically inhibit HIF-1α expression, inhibit cell proliferation, and alter the expression of key components in the Wnt/β-catenin signaling pathway. Thus, p-HIF-1α RNAi is a novel and extremely promising therapeutic inhibitor of HIF-1α.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555684 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!