Glycitein is an O-methylated isoflavone which accounts for 5-10% of the total isoflavones in soy food products. Cell proliferation studies on the dietary phytoestrogen, glycitein against human breast carcinoma SKBR-3 cells showed that glycitein exhibits biphasic regulation on SKBR-3 cells. At concentrations of less than 10 mg/mL, cells respond to glycitein by increasing cell growth and de novo DNA synthesis whereas the addition of glycitein at concentrations greater than 30 mg/mL significantly inhibited cell growth and DNA synthesis in a dose-dependent manner. Cells treated with 60 mg/mL of glycitein did not regain normal growth after treatment was stopped. Glycitein was found to be cytostatic at low concentrations and cytotoxic at higher concentrations. Treatment with 100 mg/mL of glycitein severely altered the cell morphology. Collective results showed that glycitein damaged the cell membranes by increasing membrane permeability and suggested possible mechanisms of the action of dietary phytoestrogens on human breast carcinoma SKBR-3 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555673 | PMC |
Anal Chem
December 2024
Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia.
Gold nanoparticles (AuNPs) have shown promise for applications in the diagnosis and treatment of different diseases, including cancer. Understanding the effect of AuNPs on metabolic reprogramming in cancer cells at the single cell level is of high importance for improving the efficacy and safety. Fluorescence lifetime imaging microscopy (FLIM) of nicotinamide adenine dinucleotide (phosphate) hydrogen (NAD(P)H) as a main metabolic cofactor and an indicator of metabolic reprogramming in cancer cells enables real-time monitoring of cancer cell metabolism in response to different treatments, including AuNPs.
View Article and Find Full Text PDFHistochem Cell Biol
November 2024
Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
Dihydroorotate dehydrogenase (DHODH) inhibitors have recently gained increasing research interest owing to their potential for treating breast cancers. We explored their effects in different breast cancer subtypes, focusing on mitochondrial dysfunction. The sensitivity of different subtypes to the inhibitors was investigated with respect to DHODH expression, tumorigenic, and receptor status.
View Article and Find Full Text PDFOncol Lett
January 2025
Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey.
In recent years, there have been significant developments using combined therapies in cancer treatment. The present study aimed to determine the effects of using crizotinib alone and in combination with butyric acid on different types of breast cancer cells. A total of three different breast cancer models were used: MDA-MB-231, a triple negative model; MCF-7, a Luminal A model; and SKBR-3 cell line, a human epidermal growth factor receptor 2 positive model.
View Article and Find Full Text PDFMolecules
September 2024
Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland.
Oleanolic acid, a naturally occurring triterpenoid compound, has garnered significant attention in the scientific community due to its diverse pharmacological properties. Continuing our previous work on the synthesis of oleanolic acid dimers (OADs), a simple, economical, and safe acetylation reaction was performed. The newly obtained derivatives (AcOADs, -) were purified using two methods.
View Article and Find Full Text PDFJ Pers Med
September 2024
Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
Background: The Autotaxin (ATX)-lysophosphatidic acid (LPA) axis is involved in decreasing radiation sensitivity of breast tumor cells. This study aims to further elucidate the effect of irradiation on the ATX-LPA axis and cytokine secretion in different breast cancer cell lines to identify suitable breast cancer subtypes for targeted therapies.
Methods: Different breast cancer cell lines (MCF-7 (luminal A), BT-474 (luminal B), SKBR-3 (HER2-positive), MDA-MB-231 and MDA-MB-468 (triple-negative)) and the breast epithelial cell line MCF-10A were irradiated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!