Urine was collected from six patients receiving a continuous infusion of 20 mg/h ajmaline. Pooled urine was extracted with and without enzymatic conjugate cleavage or hydrolysis with concentrated hydrochloric acid. The extracts were analyzed by gas chromatography/mass spectrometry. Ajmaline and its metabolites in urine were identified in the form of their acetylated derivatives. Twenty two different acetylated derivatives of ajmaline and its metabolites could be detected. Three of these derivatives were artifacts generated by acetylation and/or thermal decomposition. The major metabolic pathways were mono- and di-hydroxylation of the benzene ring with subsequent O-methylation, reduction of the C-21, oxidation of the C-17 and C-21-hydroxyl function, N-oxidation, and a combination of these metabolic steps. Ajmaline and its metabolites were mainly excreted in the form of their conjugates. Furthermore, the interference of sparteine, debrisoquine, quinidine, and nifedipine with ajmaline metabolism was studied with semiquantitative thin-layer chromatography. Ajmaline metabolism was inhibited by co-administration of sparteine or quinidine, but not by debrisoquine or nifedipine. Sparteine most likely competed with ajmaline metabolism. Quinidine probably bound competitively to ajmaline-metabolizing enzymes without being metabolized itself. Additionally, the metabolic ratio of hydroxyajmaline/ajmaline in urine was determined in 9 extensive metabolizers and one poor metabolizer of dextromethorphan. The poor metabolizer had a significantly reduced metabolic ratio of hydroxyajmaline/ajmaline, which indicates that ajmaline metabolism probably co-segregates with polymorphic sparteine/debrisoquine/dextromethorphan metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF03190117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!