Antigenic Determinants of Possible Vaccine Escape by Porcine Circovirus Subtype 2b Viruses.

Bioinform Biol Insights

Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, USA.

Published: September 2015

Currently available commercial vaccines against porcine circovirus strain 2 (PCV2) solely target the PCV2a genotype. While PCV2 vaccines are highly effective in preventing clinical signs, PCV2b has dominated over the PCV2a genotype in prevalence, corresponding with the introduction of PCV2a vaccines. A recently emerged PCV2b recombinant with an additional amino acid in the capsid protein, designated the mutant PCV2b (mPCV2b), is cause for concern due to its increased virulence and rapid spread. The accumulation of recent evidence for the increased genetic diversity in PCV2 suggests that current vaccines against PCV2a may be inducing selection pressure and driving viral evolution. In this study, the hypothesis that differences in key immune epitopes between the PCV2a vaccine strains, a classical PCV2b strain called PCV2b 41513 obtained from a vaccine-failure case, and mPCV2b strains could promote vaccine escape was tested using immuno-informatic tools. In the major viral proteins, 9 of the 18 predicted swine leukocyte antigens (SLA) class-I epitopes, 8 of the 22 predicted SLA class-II epitopes, and 7 of the 25 predicted B cell epitopes varied between the vaccine and field strains. A majority of the substitutions in both the T- and B-cell epitopes were located in the capsid protein. Some B- and T-cell epitopes that were identified as immunogenic in the vaccine strain were not identified as epitopes in the field strains, indicating a subtle shift in the antigenic profile of the field strains. Several nonconserved epitopes had both predicted B- and T-cell functions. Therefore, substitutions in the dual epitopes could affect both arms of the immune response simultaneously, causing immune escape. Our findings support further rational design of PCV2 vaccines to increase the current threshold of protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550186PMC
http://dx.doi.org/10.4137/BBI.S30226DOI Listing

Publication Analysis

Top Keywords

epitopes predicted
12
field strains
12
epitopes
9
vaccine escape
8
porcine circovirus
8
pcv2a genotype
8
pcv2 vaccines
8
capsid protein
8
vaccine
5
vaccines
5

Similar Publications

Signaling pathways play key roles in many important biological processes, such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. The use of phospho-specific antibodies facilitates the analysis of signaling pathway regulation and activity.

View Article and Find Full Text PDF

Background: Tamdy virus (TAMV) was first isolated in Uzbekistan and Turkmenistan. In 2018, it was found in China, marking its entry into the molecular research era. TAMV is linked to febrile diseases, but its epidemiology and spillover risks are poorly understood, necessitating urgent molecular research and detection method development.

View Article and Find Full Text PDF

Designed mosaic nanoparticles enhance cross-reactive immune responses in mice.

Cell

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA. Electronic address:

Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2s), five (mosaic-5), or seven (mosaic-7) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges.

View Article and Find Full Text PDF

Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.

View Article and Find Full Text PDF

Negative Association of Gulf War Illness Symptomatology with Predicted Binding Affinity of Anthrax Vaccine Antigen to Human Leukocyte (HLA) Class II Molecules.

Vaccines (Basel)

January 2025

The GWI and HLA Research Groups, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA.

Background: Anthrax is a serious disease caused by () with a very high mortality when the spores of are inhaled (inhalational anthrax). Aerosolized spores can be used as a deadly bioweapon. Vaccination against anthrax is the only effective preventive measure and, hence, the anthrax vaccine was administered to United States (and other) troops during the 1990-91 Gulf War.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!