Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic.

Proc Natl Acad Sci U S A

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, Scotland, United Kingdom.

Published: September 2015

Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material ("biological pump") is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal "lipid pump," which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a "lipid shunt," and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593097PMC
http://dx.doi.org/10.1073/pnas.1512110112DOI Listing

Publication Analysis

Top Keywords

lipid pump
12
north atlantic
12
carbon
9
carbon sequestration
8
detrital material
8
seasonal copepod
4
copepod lipid
4
pump promotes
4
promotes carbon
4
sequestration deep
4

Similar Publications

Therapeutic potential of 2S-hesperidin against the hepatotoxic effects of dichlorvos in rats.

Food Chem Toxicol

December 2024

Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.

Dichlorvos (DDVP) is an organophosphate insecticide that enhances food production and repels disease vectors. However, it provokes cytotoxicity. 2S-hesperidin (2S-HES) is a potent antioxidant, anti-inflammatory, and anti-lipidemic flavanone.

View Article and Find Full Text PDF

Background: Women are underrepresented in drug development trials and there is no sex-tailored drug regimen for most medications. It has been repeatedly shown that women have more adverse drug reactions than men for several medications. These differences could be explained by higher dose-adjusted drug concentrations in women.

View Article and Find Full Text PDF

Multidrug-resistant (MDR) remains a significant global health threat. This study aimed to explore the potential of essential oil components as novel inhibitors of the MDR efflux pumps AcrAB and AcrD. isolates were characterized for serotype, antibiotic resistance, and efflux pump activity.

View Article and Find Full Text PDF

Mode of action of silver-based perovskite against Gram-negative bacteria.

Microbiol Spectr

December 2024

Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de recherche en infectiologie du Centre de Recherche CHU de Québec, Université Laval, Québec, Canada.

Although silver is known for its antibacterial activity, its exact mode of action remains unclear. In our previous work, we described AgNbO nanoparticles (AgNbO NPs) prepared using a ceramic method, followed by high-energy and low-energy ball-milling processes, which exhibited antimicrobial activity with negligible release of Ag in deionized water. Here, we investigated thoroughly the mode of action of these AgNbO NPs against .

View Article and Find Full Text PDF

Dietary high lipid and high plant-protein affected growth performance, liver health, bile acid metabolism and gut microbiota in groupers.

Anim Nutr

December 2024

Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China.

Article Synopsis
  • High lipid diets (HLD) and high plant-protein diets (HPD) can reduce the need for fishmeal in fish diets but may harm liver health and growth performance in pearl gentian groupers.
  • A study found that both HLD and HPD led to significant decreases in fish weight gain, growth rate, and feed intake compared to a control diet, with a combined high lipid-high plant-protein diet (HLPD) worsening these effects.
  • Liver health was negatively impacted, showing increased cholesterol and triglyceride levels, inflammation, and oxidative stress, along with altered gene expression linked to bile acid metabolism.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!